Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.566 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Intel·ligència Artificial
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Intel·ligència Artificial
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Operational modes detection in industrial gas turbines using an ensemble of clustering methods

Thumbnail
View/Open
sensors-21-08047.pdf (9,133Mb)
Share:
 
 
10.3390/s21238047
 
  View Usage Statistics
Cita com:
hdl:2117/363011

Show full item record
Bagherzade Ghazvini, MinaMés informació
Sànchez-Marrè, MiquelMés informacióMés informacióMés informació
Bahilo, Edgar
Angulo Bahón, CecilioMés informacióMés informacióMés informació
Document typeArticle
Defense date2021-12-01
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Operational modes of a process are described by a number of relevant features that are indicative of the state of the process. Hundreds of sensors continuously collect data in industrial systems, which shows how the relationship between different variables changes over time and identifies different modes of operation. Gas turbines’ operational modes are usually defined regarding their expected energy production, and most research works either are focused a priori on obtaining these modes solely based on one variable, the active load, or assume a fixed number of states and build up predictive models to classify new situations as belonging to the predefined operational modes. However, in this work, we take into account all available parameters based on sensors’ data because other factors can influence the system status, leading to the identification of a priori unknown operational modes. Furthermore, for gas turbine management, a key issue is to detect these modes using a real-time monitoring system. Our approach is based on using unsupervised machine learning techniques, specifically an ensemble of clusters to discover consistent clusters, which group data into similar groups, and to generate in an automatic way their description. This description, upon interpretation by experts, becomes identified and characterized as operational modes of an industrial process without any kind of a priori bias of what should be the operational modes obtained. Our proposed methodology can discover and identify unknown operational modes through data-driven models. The methodology was tested in our case study with Siemens gas turbine data. From available sensors’ data, clusters descriptions were obtained in an automatic way from aggregated clusters. They improved the quality of partitions tuning one consistency parameter and excluding outlier clusters by defining filtering thresholds. Finally, operational modes and/or sub-operational modes were identified with the interpretation of the clusters description by process experts, who evaluated the results very positively.
CitationBagherzade, M. [et al.]. Operational modes detection in industrial gas turbines using an ensemble of clustering methods. "Sensors", 1 Desembre 2021, vol. 21, núm. 23, p. 8047:1-8047:25. 
URIhttp://hdl.handle.net/2117/363011
DOI10.3390/s21238047
ISSN1511-1534
Publisher versionhttps://www.mdpi.com/1424-8220/21/23/8047
Collections
  • Doctorat en Intel·ligència Artificial - Articles de revista [26]
  • Departament de Ciències de la Computació - Articles de revista [953]
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Articles de revista [1.274]
  • KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic - Articles de revista [112]
  • GREC - Grup de Recerca en Enginyeria del Coneixement - Articles de revista [94]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
sensors-21-08047.pdf9,133MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Cookies policy
  • Inici de la pàgina