Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.736 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Arquitectura de Computadors
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Arquitectura de Computadors
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Acceleration strategies for large-scale sequential simulations using parallel neighbour search: Non-LVA and LVA scenarios

Thumbnail
View/Open
1-s2.0-S0098300421003083-main.pdf (5,769Mb)
 
10.1016/j.cageo.2021.105027
 
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/362994

Show full item record
Peredo Andrade, Oscar FranciscoMés informacióMés informació
Herrero Zaragoza, José RamónMés informacióMés informacióMés informació
Document typeArticle
Defense date2022-03
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 4.0 International
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 International
ProjectUPC-COMPUTACION DE ALTAS PRESTACIONES VIII (AEI-PID2019-107255GB-C22)
Abstract
This paper describes the application of acceleration techniques into existing implementations of Sequential Gaussian Simulation and Sequential Indicator Simulation. These implementations might incorporate Locally Varying Anisotropy (LVA) to capture non-linear features of the underlying physical phenomena. The imple- mentation focuses on a novel parallel neighbour search algorithm, which can be used on both non-LVA and LVA codes. Additionally, parallel shortest path executions and optimized linear algebra libraries are applied with focus on LVA codes. Execution time, speedup and accuracy results are presented. Non-LVA codes are benchmarked using two scenarios with approximately 50 million domain points each. Speedup results of 2× and 4× were obtained on SGS and SISIM respectively, where each scenario is compared against a baseline code published in Peredo et al. (2018). The aggregated contribution to speedup of both works results in 12× and 50× respectively. LVA codes are benchmarked using two scenarios with approximately 1.7 million domain points each. Speedup results of 56× and 1822× were obtained on SGS and SISIM respectively, where each scenario is compared against the original baseline sequential codes.
CitationPeredo, O.; Herrero, J. Acceleration strategies for large-scale sequential simulations using parallel neighbour search: Non-LVA and LVA scenarios. "Computers and geosciences", Març 2022, vol. 160, article 105027, p. 1-19. 
URIhttp://hdl.handle.net/2117/362994
DOI10.1016/j.cageo.2021.105027
ISSN0098-3004
Publisher versionhttps://www.sciencedirect.com/science/article/pii/S0098300421003083
Collections
  • Departament d'Arquitectura de Computadors - Articles de revista [1.005]
  • CAP - Grup de Computació d'Altes Prestacions - Articles de revista [380]
  • Doctorat en Arquitectura de Computadors - Articles de revista [152]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
1-s2.0-S0098300421003083-main.pdf5,769MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina