Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.660 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ROBiri - Grup de Robòtica de l'IRI
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ROBiri - Grup de Robòtica de l'IRI
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interaction-GCN: a graph convolutional network based framework for social interaction recognition in egocentric videos

Thumbnail
View/Open
2457-Interaction-GCN -a-Graph-Convolutional-Network-based-framework-for-social-interaction-recognition-in-egocentric-videos.pdf (1,429Mb)
Share:
 
 
10.1109/ICIP42928.2021.9506690
 
  View Usage Statistics
Cita com:
hdl:2117/362820

Show full item record
Felicioni, Simone
Dimiccoli, MariellaMés informació
Document typeConference report
Defense date2021
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
In this paper we propose a new framework to categorize social interactions in egocentric videos, we named InteractionGCN. Our method extracts patterns of relational and non-relational cues at the frame level and uses them to build a relational graph from which the interactional context at the frame level is estimated via a Graph Convolutional Network based approach. Then it propagates this context over time, together with first-person motion information, through a Gated Recurrent Unit architecture. Ablation studies and experimental evaluation on two publicly available datasets validate the proposed approach and establish state of the art results.
Description
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
CitationFelicioni, S.; Dimiccoli, M. Interaction-GCN: a graph convolutional network based framework for social interaction recognition in egocentric videos. A: IEEE International Conference on Image Processing. "Proceeding of 2021 IEEE International Conference on Image Processing (ICIP)". Institute of Electrical and Electronics Engineers (IEEE), 2021, p. 2348-2352. ISBN 978-1-6654-4115-5. DOI 10.1109/ICIP42928.2021.9506690. 
URIhttp://hdl.handle.net/2117/362820
DOI10.1109/ICIP42928.2021.9506690
ISBN978-1-6654-4115-5
Publisher versionhttps://ieeexplore.ieee.org/document/9506690
Collections
  • ROBiri - Grup de Robòtica de l'IRI - Ponències/Comunicacions de congressos [219]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
2457-Interactio ... n-in-egocentric-videos.pdf1,429MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina