Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.757 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

NetXplain: Real-time explainability of graph neural networks applied to computer networks

Thumbnail
View/Open
GNNSys21_paper_7 (3).pdf (455,7Kb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/362561

Show full item record
Pujol Perich, David
Suárez-Varela Maciá, José RafaelMés informacióMés informació
Xiao, Shihan
Wu, Bo
Cabellos Aparicio, AlbertoMés informacióMés informacióMés informació
Barlet Ros, PereMés informacióMés informacióMés informació
Document typeConference report
Defense date2021
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
ProjectNGI-POINTER - NGI Program for Open INTErnet Renovation (EC-H2020-871528)
DISEÑANDO UNA INFRAESTRUCTURA DE RED 5G DEFINIDA MEDIANTE CONOCIMIENTO HACIA LA PROXIMA SOCIEDAD DIGITAL (AEI-TEC2017-90034-C2-1-R)
Abstract
Recent advancements in Deep Learning (DL) have revolutionized the way we can efficiently tackle complex optimization problems. However, existing DL-based solutions are often considered as black boxes due to their high inner complexity. As a result, there is still certain skepticism among the computer network industry about their practical viability to operate data networks. In this context, explainability techniques have recently emerged to unveil why DL models make each decision. This paper focuses on Graph Neural Network (GNN) models applied to computer networks, which have already shown outstanding performance in different network optimization tasks. We thus present NetXplain, a novel real-time explainability solution that uses a GNN to interpret the output produced by another GNN. In the evaluation, we apply the proposed explainability method to RouteNet –a GNN model that predicts end-to-end performance metrics in computer networks. We show that NetXplain operates more than 3 orders of magnitude faster than state-of-the-art explainability solutions when applied to networks up to 24 nodes, which makes this solution compatible with real-time applications. Moreover, it demonstrated strong generalization capabilities over different network scenarios unseen during training.
CitationPujol, D. [et al.]. NetXplain: Real-time explainability of graph neural networks applied to computer networks. A: Workshop on Graph Neural Networks and Systems. "Proceedings of the First MLSys Workshop on Graph Neural Networks and Systems (GNNSys'21), San Jose, CA, USA, 2021". 2021, p. 1-7. 
URIhttp://hdl.handle.net/2117/362561
Publisher versionhttps://gnnsys.github.io/papers/GNNSys21_paper_7.pdf
Collections
  • CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla - Ponències/Comunicacions de congressos [237]
  • Departament d'Arquitectura de Computadors - Ponències/Comunicacions de congressos [1.848]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
GNNSys21_paper_7 (3).pdf455,7KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina