Show simple item record

dc.contributorAcosta Argueta, Lesly María
dc.contributorZamora Fernández, Sergi
dc.contributor.authorIbáñez Prat, Ferran
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
dc.date.accessioned2022-02-17T10:43:29Z
dc.date.available2022-02-17T10:43:29Z
dc.date.issued2022-01
dc.identifier.urihttp://hdl.handle.net/2117/362549
dc.description.abstractPredicting sales using cannibalization effects is a current major challenge. Several approaches deal with the estimation of cannibalization of new product launches or promotion effects but how to account for it when predicting future sales is still missing. For this reason, we aim to fill this gap by proposing a new framework based on time series causality as a method to identify potential candidates of causality. To attain such an objective, we use two state-of-art gradient boosting based algorithms, namely Extream gradient Boosting (XGBoost) and Light Gradient Boosting Machine (LGBM ), as well as two Multi-step forecasting strategies. We show that the cannibalization approach together with Recursive forecasting provides more accurate forecasts respect to established benchmark models.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.publisherUniversitat de Barcelona
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Estadística matemàtica
dc.subject.lcshMathematical statistics
dc.subject.otherTime Series
dc.subject.otherCannibalization
dc.subject.otherXGBoost
dc.subject.otherLGBM
dc.subject.otherSales Forecasting
dc.subject.otherProduct Promotions
dc.subject.otherMachine Learning
dc.titleA planning solution for forecasting product sales with cannibalization
dc.typeMaster thesis
dc.subject.lemacEstadística matemàtica
dc.subject.amsClassificació AMS::62 Statistics
dc.identifier.slugFME-2249
dc.rights.accessOpen Access
dc.date.updated2022-02-03T06:22:19Z
dc.audience.educationlevelMàster
dc.audience.mediatorUniversitat Politècnica de Catalunya. Facultat de Matemàtiques i Estadística
dc.contributor.covenanteeAccenture


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record