Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
13.567 Articles in journals published by the UPC
You are here:
View Item 
  •   DSpace Home
  • Revistes
  • SORT (Statistics and Operations Research Transactions)
  • 2020: Vol. 44, Núm. 2
  • View Item
  •   DSpace Home
  • Revistes
  • SORT (Statistics and Operations Research Transactions)
  • 2020: Vol. 44, Núm. 2
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modelling multivariate, overdispersed count data with correlated and non-normal heterogeneity effects

Thumbnail
View/Open
44.2.5.Kazemi-Hassanzadeh.pdf (459,2Kb)
44.2.5.Kazemi-Hassanzadeh.zip (162,1Kb)
Share:
 
 
10.2436/20.8080.02.105
 
  View Usage Statistics
Cita com:
hdl:2117/362103

Show full item record
Kazemi, Iraj
Hassanzadeh, Fatemeh
Document typeArticle
Defense date2020-12-17
PublisherInstitut d'Estadística de Catalunya
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Mixed Poisson models are most relevant to the analysis of longitudinal count data in various disciplines. A conventional specification of such models relies on the normality of unobserved heterogeneity effects. In practice, such an assumptionmay be invalid, and non-normal cases are appealing. In this paper, we propose a modelling strategy by allowing the vector of effects to follow the multivariate skew-normal distribution. It can produce dependence between the correlated longitudinal counts by imposing several structures of mixing priors. In a Bayesian setting, the estimation process proceeds by sampling variants from the posterior distributions. We highlight the usefulness of our approach by conducting a simulation study and analysing two real-life data sets taken from the German Socioeconomic Panel and the US Centers for Disease Control and Prevention. By a comparative study, we indicate that the new approach can produce more reliable results compared to traditional mixed models to fit correlated count data.
CitationKazemi, I.; Hassanzadeh, F. Modelling multivariate, overdispersed count data with correlated and non-normal heterogeneity effects. "SORT", 17 Desembre 2020, vol. 44, núm. 2, p. 335-356. 
URIhttp://hdl.handle.net/2117/362103
DOI10.2436/20.8080.02.105
ISSN1696-2281
Collections
  • SORT (Statistics and Operations Research Transactions) - 2020: Vol. 44, Núm. 2 [1]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
44.2.5.Kazemi-Hassanzadeh.pdf459,2KbPDFView/Open
44.2.5.Kazemi-Hassanzadeh.zip162,1Kbapplication/zipView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina