Show simple item record

dc.contributor.authorAbadal Cavallé, Sergi
dc.contributor.authorJain, Akshay
dc.contributor.authorGuirado Liñan, Robert
dc.contributor.authorLópez Alonso, Jorge
dc.contributor.authorAlarcón Cot, Eduardo José
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
dc.date.accessioned2022-02-10T09:08:15Z
dc.date.available2022-02-10T09:08:15Z
dc.date.issued2022-12-01
dc.identifier.citationAbadal, S. [et al.]. Computing graph neural networks: A survey from algorithms to accelerators. "ACM computing surveys", 1 Desembre 2022, vol. 54, núm. 9, p. 191:1-191:38.
dc.identifier.issn1557-7341
dc.identifier.urihttp://hdl.handle.net/2117/362081
dc.description.abstractGraph Neural Networks (GNNs) have exploded onto the machine learning scene in recent years owing to their capability to model and learn from graph-structured data. Such an ability has strong implications in a wide variety of fields whose data are inherently relational, for which conventional neural networks do not perform well. Indeed, as recent reviews can attest, research in the area of GNNs has grown rapidly and has lead to the development of a variety of GNN algorithm variants as well as to the exploration of ground-breaking applications in chemistry, neurology, electronics, or communication networks, among others. At the current stage research, however, the efficient processing of GNNs is still an open challenge for several reasons. Besides of their novelty, GNNs are hard to compute due to their dependence on the input graph, their combination of dense and very sparse operations, or the need to scale to huge graphs in some applications. In this context, this article aims to make two main contributions. On the one hand, a review of the field of GNNs is presented from the perspective of computing. This includes a brief tutorial on the GNN fundamentals, an overview of the evolution of the field in the last decade, and a summary of operations carried out in the multiple phases of different GNN algorithm variants. On the other hand, an in-depth analysis of current software and hardware acceleration schemes is provided, from which a hardware-software, graph-aware, and communication-centric vision for GNN accelerators is distilled.
dc.description.sponsorshipThis work is possible thanks to funding from the European Union’s Horizon 2020 research and innovation programme under Grant No. 863337 (WiPLASH project) and the Spanish Ministry of Economy and Competitiveness under contract TEC2017-90034-C2-1-R (ALLIANCE project) that receives funding from FEDER.
dc.language.isoeng
dc.publisherAssociation for Computing Machinery (ACM)
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic
dc.subjectÀrees temàtiques de la UPC::Informàtica::Arquitectura de computadors
dc.subject.lcshNeural networks (Computer science)
dc.subject.lcshMachine learning
dc.subject.otherGraph neural networks
dc.subject.otherGNN algorithms
dc.subject.otherAccelerators
dc.subject.otherGraph embeddings
dc.titleComputing graph neural networks: A survey from algorithms to accelerators
dc.typeArticle
dc.subject.lemacXarxes neuronals (Informàtica)
dc.subject.lemacAprenentatge automàtic
dc.contributor.groupUniversitat Politècnica de Catalunya. CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla
dc.contributor.groupUniversitat Politècnica de Catalunya. WNG - Grup de xarxes sense fils
dc.contributor.groupUniversitat Politècnica de Catalunya. EPIC - Energy Processing and Integrated Circuits
dc.identifier.doi10.1145/3477141
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://dl.acm.org/doi/10.1145/3477141
dc.rights.accessOpen Access
local.identifier.drac32540435
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/863337/EU/Architecting More Than Moore – Wireless Plasticity for Heterogeneous Massive Computer Architectures/WiPLASH
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-90034-C2-1-R/ES/DISEÑANDO UNA INFRAESTRUCTURA DE RED 5G DEFINIDA MEDIANTE CONOCIMIENTO HACIA LA PROXIMA SOCIEDAD DIGITAL/
local.citation.authorAbadal, S.; Jain, A.; Guirado, R.; López, J.; Alarcón, E.
local.citation.publicationNameACM computing surveys
local.citation.volume54
local.citation.number9
local.citation.startingPage191:1
local.citation.endingPage191:38


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record