Human-robot collaborative multi-agent path planning using Monte Carlo tree search and social reward sources
Cita com:
hdl:2117/361998
Document typeConference report
Defense date2021
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectTERRINet - The European Robotics Research Infrastructure Network (EC-H2020-730994)
AI4EU - A European AI On Demand Platform and Ecosystem (EC-H2020-825619)
COLABORACION ROBOT-HUMANO PARA EL TRANSPORTE Y ENTREGA DE MERCANCIAS (AEI-PID2019-106702RB-C21)
AI4EU - A European AI On Demand Platform and Ecosystem (EC-H2020-825619)
COLABORACION ROBOT-HUMANO PARA EL TRANSPORTE Y ENTREGA DE MERCANCIAS (AEI-PID2019-106702RB-C21)
Abstract
The collaboration between humans and robots in an object search task requires the achievement of shared plans obtained from communicating and negotiating. In this work, we assume that the robot computes, as a first step, a multiagent plan for both itself and the human. Then, both plans are submitted to human scrutiny, who either agrees or modifies it forcing the robot to adapt its own restrictions or preferences. This process is repeated along the search task as many times as required by the human. Our planner is based on a decentralized variant of Monte Carlo Tree Search (MCTS), with one robot and one human as agents. Moreover, our algorithm allows the robot and the human to optimize their own actions by maintaining a probability distribution over the plans in a joint action space. The method allows an objective function definition over action sequences, it assumes intermittent communication, it is anytime and suitable for on-line replanning. To test it, we have developed a human-robot communication mobile phone interface. Validation is provided by real-life search experiments of a Parcheesi token in an urban space, including also an acceptability study.
Description
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
CitationDalmasso, M. [et al.]. Human-robot collaborative multi-agent path planning using Monte Carlo tree search and social reward sources. A: IEEE International Conference on Robotics and Automation. "2021 International Conference on Robotics and Automation (ICRA 2021): Xi'an, China: May 30 - June 4, 2021". 2021, p. 10133-10138. DOI 10.1109/ICRA48506.2021.9560995.
Publisher versionhttps://ieeexplore.ieee.org/document/9560995
Collections
- IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC - Ponències/Comunicacions de congressos [590]
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Ponències/Comunicacions de congressos [1.526]
- VIS - Visió Artificial i Sistemes Intel·ligents - Ponències/Comunicacions de congressos [296]
- ROBiri - Grup de Percepció i Manipulació Robotitzada de l'IRI - Ponències/Comunicacions de congressos [265]
- Doctorat en Automàtica, Robòtica i Visió - Ponències/Comunicacions de congressos [182]
Files | Description | Size | Format | View |
---|---|---|---|---|
2475-Human-Robo ... -Social-Reward-Sources.pdf | 11,67Mb | View/Open |