Show simple item record

dc.contributor.authorGregory Baltas, Nicholas
dc.contributor.authorLai, Ngoc Bao
dc.contributor.authorMarín Arévalo, Leonardo Vidal
dc.contributor.authorTarraso Martínez, Andrés
dc.contributor.authorRodríguez Cortés, Pedro
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Sistemes d'Energia Elèctrica
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Elèctrica
dc.date.accessioned2022-02-08T08:44:00Z
dc.date.issued2020
dc.identifier.citationGregory Baltas, N. [et al.]. A growing self-organising maps implementation for coherency identification in a power electronics dominated power system. A: Energy Conversion Congress and Exposition. "2020 IEEE Energy Conversion Congress and Exposition (ECCE)". 2020, p. 1963-1967. ISBN 978-1-7281-5826-6. DOI 10.1109/ECCE44975.2020.9235611.
dc.identifier.isbn978-1-7281-5826-6
dc.identifier.urihttp://hdl.handle.net/2117/361903
dc.description.abstractThe presence of power electronics in today’s power systems strengthens due to the wider integration of renewable energy and energy storage systems. Subsequently, the dynamical response becomes harder to model and understand. As a possible solution, coherency identification, among other applications, can reduce complexity. However, conventional tools possess limitations related to the assumptions need to be taken beforehand. In this paper, we propose a fully unsupervised variation of neural networks called the growing self organising maps (GSOM). The main advantage of GSOM over traditional methods is that network structure is not fixed, thus previous assumptions about the number of coherent groups or data structure are not necessary. A spreading factor controls the growth rate of the network allowing the analyst to choose the level of granularity whilst ensuring topology preservation. The effectiveness of the proposed algorithm is tested on the Nordic 32 power system.
dc.description.sponsorshipThis work was supported by the European Commission under project INTERRFACE - H2020-LC-SC3-2018-ES-SCC– 824330 and by the Spanish Ministry of Science under project ENE2017-88889-C2-1-R.
dc.format.extent5 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Enginyeria electrònica::Electrònica de potència
dc.subject.lcshElectric generators
dc.subject.lcshElectric power systems
dc.subject.lcshRenewable energy sources
dc.titleA growing self-organising maps implementation for coherency identification in a power electronics dominated power system
dc.typeConference lecture
dc.subject.lemacGeneradors elèctrics
dc.subject.lemacSistemes de distribució d'energia elèctrica
dc.subject.lemacEnergies renovables
dc.contributor.groupUniversitat Politècnica de Catalunya. SEER - Sistemes Elèctrics d'Energia Renovable
dc.identifier.doi10.1109/ECCE44975.2020.9235611
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9235611
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac32493992
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/824330/EU/TSO-DSO-Consumer INTERFACE aRchitecture to provide innovative grid services for an efficient power system/INTERRFACE
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/ENE2017-88889-C2-1-R/ES/NODOS INTELIGENTES CON ALMACENAMIENTO DE ENERGIA PARA FLEXIBILIZAR LA OPERACION DE SISTEMAS DE DISTRIBUCION/
dc.date.lift10000-01-01
local.citation.authorGregory Baltas, N.; Lai, N.; Marín , L.; Tarrasó, A.; Rodriguez, P.
local.citation.contributorEnergy Conversion Congress and Exposition
local.citation.publicationName2020 IEEE Energy Conversion Congress and Exposition (ECCE)
local.citation.startingPage1963
local.citation.endingPage1967


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record