A growing self-organising maps implementation for coherency identification in a power electronics dominated power system
View/Open
A_Growing_Self-Organising_Maps_Implementation_for_Coherency_Identification_in_a_Power_Electronics_Dominated_Power_System.pdf (5,630Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/361903
Document typeConference lecture
Defense date2020
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
ProjectINTERRFACE - TSO-DSO-Consumer INTERFACE aRchitecture to provide innovative grid services for an efficient power system (EC-H2020-824330)
NODOS INTELIGENTES CON ALMACENAMIENTO DE ENERGIA PARA FLEXIBILIZAR LA OPERACION DE SISTEMAS DE DISTRIBUCION (AEI-ENE2017-88889-C2-1-R)
NODOS INTELIGENTES CON ALMACENAMIENTO DE ENERGIA PARA FLEXIBILIZAR LA OPERACION DE SISTEMAS DE DISTRIBUCION (AEI-ENE2017-88889-C2-1-R)
Abstract
The presence of power electronics in today’s power systems strengthens due to the wider integration of renewable energy and energy storage systems. Subsequently, the dynamical response becomes harder to model and understand. As a possible solution, coherency identification, among other applications, can reduce complexity. However, conventional tools possess limitations related to the assumptions need to be taken beforehand. In this paper, we propose a fully unsupervised variation of neural networks called the growing self organising maps (GSOM). The main advantage of GSOM over traditional methods is that network structure is not fixed, thus previous assumptions about the number of coherent groups or data structure are not necessary. A spreading factor controls the growth rate of the network allowing the analyst to choose the level of granularity whilst ensuring topology preservation. The effectiveness of the proposed algorithm is tested on the Nordic 32 power system.
CitationGregory Baltas, N. [et al.]. A growing self-organising maps implementation for coherency identification in a power electronics dominated power system. A: Energy Conversion Congress and Exposition. "2020 IEEE Energy Conversion Congress and Exposition (ECCE)". 2020, p. 1963-1967. ISBN 978-1-7281-5826-6. DOI 10.1109/ECCE44975.2020.9235611.
ISBN978-1-7281-5826-6
Publisher versionhttps://ieeexplore.ieee.org/document/9235611
Files | Description | Size | Format | View |
---|---|---|---|---|
A_Growing_Self- ... Dominated_Power_System.pdf![]() | 5,630Mb | Restricted access |