Show simple item record

dc.contributor.authorKruff, Niclas
dc.contributor.authorLlibre Saló, Jaume
dc.contributor.authorPantazi, Chara
dc.contributor.authorWalcher, Sebastian
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2022-02-07T15:16:08Z
dc.date.available2022-02-07T15:16:08Z
dc.date.issued2021-01-01
dc.identifier.citationKruff, N. [et al.]. Invariant algebraic surfaces of polynomial vector fields in dimension three. "Journal of Dynamics and Differential Equations", 2023, vol. 35, p. 3241-3268
dc.identifier.issn1572-9222
dc.identifier.urihttp://hdl.handle.net/2117/361859
dc.description.abstractWe discuss criteria for the nonexistence, existence and computation of invariant algebraic surfaces for three-dimensional complex polynomial vector fields, thus transferring a classical problem of Poincaré from dimension two to dimension three. Such surfaces are zero sets of certain polynomials which we call semi-invariants of the vector fields. The main part of the work deals with finding degree bounds for irreducible semi-invariants of a given polynomial vector field that satisfies certain properties for its stationary points at infinity. As a related topic, we investigate existence criteria and properties for algebraic Jacobi multipliers. Some results are stated and proved for polynomial vector fields in arbitrary dimension and their invariant hypersurfaces. In dimension three we obtain detailed results on possible degree bounds. Moreover by an explicit construction we show for quadratic vector fields that the conditions involving the stationary points at infinity are generic but they do not a priori preclude the existence of invariant algebraic surfaces. In an appendix we prove a result on invariant lines of homogeneous polynomial vector fields.
dc.language.isoeng
dc.publisherSpringer
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de cossos i polinomis
dc.subject.lcshPoincaré conjecture
dc.subject.lcshNonassociative algebras
dc.subject.lcshJacobi forms
dc.subject.otherPoincaré problem
dc.subject.otherDarboux integrability
dc.subject.otherJacobi multiplier
dc.subject.otherNonassociative algebras
dc.titleInvariant algebraic surfaces of polynomial vector fields in dimension three
dc.typeArticle
dc.subject.lemacPoincaré, Conjectura de
dc.subject.lemacÀlgebres no associatives
dc.subject.lemacJacobi, Formes de
dc.contributor.groupUniversitat Politècnica de Catalunya. SD - Sistemes Dinàmics de la UPC
dc.identifier.doi10.1007/s10884-021-10080-8
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://link.springer.com/article/10.1007%2Fs10884-021-10080-8
dc.rights.accessOpen Access
local.identifier.drac32509550
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO//MTM2015-65715-P/ES/DINAMICA ASOCIADA A CONEXIONES ENTRE OBJETOS INVARIANTES CON APLICACIONES A NEUROCIENCIA Y ASTRODINAMICA/
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-098676-B-I00/ES/DINAMICA ASOCIADA A CONEXIONES ENTRE OBJETOS INVARIANTES CON APLICACIONES A LA NEUROCIENCIA Y LA MECANICA/
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/777911/EU/Contributions to codimension k bifurcations in dynamical systems theory/Dynamics
local.citation.authorKruff, N.; Llibre, J.; Pantazi, C.; Walcher, S.
local.citation.publicationNameJournal of Dynamics and Differential Equations
local.citation.volume35
local.citation.startingPage3241
local.citation.endingPage3268


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record