Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
69.092 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Matemàtiques
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Matemàtiques
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Invariant algebraic surfaces of polynomial vector fields in dimension three

Thumbnail
View/Open
Kruff2021_Article_InvariantAlgebraicSurfacesOfPo.pdf (467,4Kb)
 
10.1007/s10884-021-10080-8
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/361859

Show full item record
Kruff, Niclas
Llibre Saló, Jaume
Pantazi, CharaMés informacióMés informacióMés informació
Walcher, Sebastian
Document typeArticle
Defense date2021-01-01
PublisherSpringer
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectDINAMICA ASOCIADA A CONEXIONES ENTRE OBJETOS INVARIANTES CON APLICACIONES A NEUROCIENCIA Y ASTRODINAMICA (MINECO-MTM2015-65715-P)
DINAMICA ASOCIADA A CONEXIONES ENTRE OBJETOS INVARIANTES CON APLICACIONES A LA NEUROCIENCIA Y LA MECANICA (AEI-PGC2018-098676-B-I00)
Dynamics - Contributions to codimension k bifurcations in dynamical systems theory (EC-H2020-777911)
Abstract
We discuss criteria for the nonexistence, existence and computation of invariant algebraic surfaces for three-dimensional complex polynomial vector fields, thus transferring a classical problem of Poincaré from dimension two to dimension three. Such surfaces are zero sets of certain polynomials which we call semi-invariants of the vector fields. The main part of the work deals with finding degree bounds for irreducible semi-invariants of a given polynomial vector field that satisfies certain properties for its stationary points at infinity. As a related topic, we investigate existence criteria and properties for algebraic Jacobi multipliers. Some results are stated and proved for polynomial vector fields in arbitrary dimension and their invariant hypersurfaces. In dimension three we obtain detailed results on possible degree bounds. Moreover by an explicit construction we show for quadratic vector fields that the conditions involving the stationary points at infinity are generic but they do not a priori preclude the existence of invariant algebraic surfaces. In an appendix we prove a result on invariant lines of homogeneous polynomial vector fields.
CitationKruff, N. [et al.]. Invariant algebraic surfaces of polynomial vector fields in dimension three. "Journal of Dynamics and Differential Equations", 2023, vol. 35, p. 3241-3268 
URIhttp://hdl.handle.net/2117/361859
DOI10.1007/s10884-021-10080-8
ISSN1572-9222
Publisher versionhttps://link.springer.com/article/10.1007%2Fs10884-021-10080-8
Collections
  • Departament de Matemàtiques - Articles de revista [3.473]
  • SD - Sistemes Dinàmics de la UPC - Articles de revista [137]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Kruff2021_Artic ... tAlgebraicSurfacesOfPo.pdf467,4KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina