dc.contributor.author | Castro Cros, Martí de |
dc.contributor.author | Velasco García, Manel |
dc.contributor.author | Angulo Bahón, Cecilio |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Intel·ligència Artificial |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial |
dc.date.accessioned | 2022-02-04T09:08:24Z |
dc.date.available | 2022-02-04T09:08:24Z |
dc.date.issued | 2021-12-15 |
dc.identifier.citation | De Castro, M.; Velasco, M.; Angulo, C. Machine-learning-based condition assessment of gas turbine: a review. "Energies", 15 Desembre 2021, vol. 14, núm. 24, p. 8468:1-8468:27. |
dc.identifier.issn | 1996-1073 |
dc.identifier.other | https://www.researchgate.net/publication/357068356_Machine-Learning-Based_Condition_Assessment_of_Gas_Turbines-A_Review |
dc.identifier.uri | http://hdl.handle.net/2117/361662 |
dc.description.abstract | Condition monitoring, diagnostics, and prognostics are key factors in today’s competitive industrial sector. Equipment digitalisation has increased the amount of available data throughout the industrial process, and the development of new and more advanced techniques has significantly improved the performance of industrial machines. This publication focuses on surveying the last decade of evolution of condition monitoring, diagnostic, and prognostic techniques using machinelearning (ML)-based models for the improvement of the operational performance of gas turbines. A comprehensive review of the literature led to a performance assessment of ML models and their applications to gas turbines, as well as a discussion of the major challenges and opportunities for the research on these kind of engines. This paper further concludes that the combination of the available information captured through the collectors and the ML techniques shows promising results in increasing the accuracy, robustness, precision, and generalisation of industrial gas turbine equipment. |
dc.description.sponsorship | This research was funded by Siemens Energy. |
dc.language.iso | eng |
dc.rights | Attribution 4.0 International |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Aprenentatge automàtic |
dc.subject.lcsh | Machine learning |
dc.subject.lcsh | Gas-turbines |
dc.subject.other | Artificial intelligence |
dc.subject.other | Machine learning |
dc.subject.other | Soft sensor |
dc.subject.other | Condition assessment |
dc.subject.other | Gas turbine |
dc.title | Machine-learning-based condition assessment of gas turbine: a review |
dc.type | Article |
dc.subject.lemac | Aprenentatge automàtic |
dc.subject.lemac | Turbines de gas |
dc.contributor.group | Universitat Politècnica de Catalunya. GREC - Grup de Recerca en Enginyeria del Coneixement |
dc.identifier.doi | 10.3390/en14248468 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://www.mdpi.com/1996-1073/14/24/8468 |
dc.rights.access | Open Access |
local.identifier.drac | 32548676 |
dc.description.version | Postprint (published version) |
local.citation.author | De Castro, M.; Velasco, M.; Angulo, C. |
local.citation.publicationName | Energies |
local.citation.volume | 14 |
local.citation.number | 24 |
local.citation.startingPage | 8468:1 |
local.citation.endingPage | 8468:27 |