Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.707 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Intel·ligència Artificial
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Intel·ligència Artificial
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine-learning-based condition assessment of gas turbine: a review

Thumbnail
View/Open
Article (1,205Mb)
Share:
 
 
10.3390/en14248468
 
  View Usage Statistics
Cita com:
hdl:2117/361662

Show full item record
Castro Cros, Martí deMés informació
Velasco García, ManelMés informacióMés informacióMés informació
Angulo Bahón, CecilioMés informacióMés informacióMés informació
Document typeArticle
Defense date2021-12-15
Rights accessOpen Access
Attribution 4.0 International
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution 4.0 International
Abstract
Condition monitoring, diagnostics, and prognostics are key factors in today’s competitive industrial sector. Equipment digitalisation has increased the amount of available data throughout the industrial process, and the development of new and more advanced techniques has significantly improved the performance of industrial machines. This publication focuses on surveying the last decade of evolution of condition monitoring, diagnostic, and prognostic techniques using machinelearning (ML)-based models for the improvement of the operational performance of gas turbines. A comprehensive review of the literature led to a performance assessment of ML models and their applications to gas turbines, as well as a discussion of the major challenges and opportunities for the research on these kind of engines. This paper further concludes that the combination of the available information captured through the collectors and the ML techniques shows promising results in increasing the accuracy, robustness, precision, and generalisation of industrial gas turbine equipment.
CitationDe Castro, M.; Velasco, M.; Angulo, C. Machine-learning-based condition assessment of gas turbine: a review. "Energies", 15 Desembre 2021, vol. 14, núm. 24, p. 8468:1-8468:27. 
URIhttp://hdl.handle.net/2117/361662
DOI10.3390/en14248468
ISSN1996-1073
Publisher versionhttps://www.mdpi.com/1996-1073/14/24/8468
Other identifiershttps://www.researchgate.net/publication/357068356_Machine-Learning-Based_Condition_Assessment_of_Gas_Turbines-A_Review
Collections
  • Doctorat en Intel·ligència Artificial - Articles de revista [26]
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Articles de revista [1.276]
  • GREC - Grup de Recerca en Enginyeria del Coneixement - Articles de revista [94]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
energies-14-08468.pdfArticle1,205MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina