Mostra el registre d'ítem simple

dc.contributor.authorMadorell Batlle, Queralt
dc.contributor.authorPeiret Giménez, Albert
dc.contributor.authorFont Llagunes, Josep Maria
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Mecànica
dc.date.accessioned2022-02-03T21:34:22Z
dc.date.available2022-02-03T21:34:22Z
dc.date.issued2021
dc.identifier.citationMadorell, Q.; Peiret, A.; Font-Llagunes, J.M. Rehabilitation of Musculoskeletal Models Using Deep Reinforcement Learning. A: ECCOMAS Thematic Conference on Multibody Dynamics. "Book of Abstracts of the 10th ECCOMAS Thematic Conference on Multibody Dynamics". 2021, p. 56-57. ISBN 978-963-421-869-2.
dc.identifier.isbn978-963-421-869-2
dc.identifier.otherhttps://eccomasmultibody2021.mm.bme.hu/Files/EccomasMultybody2021_Abstracts.pdf
dc.identifier.urihttp://hdl.handle.net/2117/361640
dc.description.abstractNeural rehabilitation is a long and complex process that patients undergo after suffering a nervous system injury, such as stroke. These kinds of injuries usually result in brain cells death and partial loss of mobility and coordination. During rehabilitation, the patient performs a series of movements and physical exercises that promote neural plasticity, the brain’s mechanism to regenerate and make new pathways that substitute the damaged connections. Unfortunately, full recovery is almost impossible. The rehabilitation process is tailored to the patient based on the physician’s expertise, and it evolves with the patient’s needs and recovery. However, few computational models for rehabilitation have been developed. For instance, Lee et al. [1] trained a musculoskeletal model of a healthy subject using deep reinforcement learning, and then a prosthetic leg was added to simulate an injury. Results showed how the artificial neural network that controlled muscle contraction was able to adapt and learn to move with the prosthetic leg. Here we show how deep reinforcement learning can be used to control a musculoskeletal model. The algorithm is able to learn new and stable motions by maximizing the so-called reward function. The nervous system is modelled with an artificial neural network, and the deep deterministic policy gradient (DDPG) algorithm is used to train the model in a simulated environment.
dc.format.extent2 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria mecànica
dc.subject.lcshBiomechanics
dc.subject.lcshNeuromuscular diseases
dc.subject.lcshRobotic exoskeletons
dc.subject.otherRehabilitation
dc.subject.otherMusculoskeletal
dc.subject.otherNervous system injury
dc.subject.otherMuscle
dc.subject.otherProsthetic
dc.titleRehabilitation of Musculoskeletal Models Using Deep Reinforcement Learning
dc.typeConference report
dc.subject.lemacBiomecànica
dc.subject.lemacExosquelets robòtics
dc.subject.lemacMalalties neuromusculars
dc.contributor.groupUniversitat Politècnica de Catalunya. BIOMEC - Biomechanical Engineering Lab
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
local.identifier.drac32541492
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-097290-B-C33/ES/DISEÑO DE SISTEMAS ROBOTICOS Y NEUROPROTESICOS PERSONALIZABLES PARA LA ASISTENCIA DE LA MARCHA UTILIZANDO METODOS DE SIMULACION PREDICTIVA/
local.citation.authorMadorell, Q.; Peiret, A.; Font-Llagunes, J.M.
local.citation.contributorECCOMAS Thematic Conference on Multibody Dynamics
local.citation.publicationNameBook of Abstracts of the 10th ECCOMAS Thematic Conference on Multibody Dynamics
local.citation.startingPage56
local.citation.endingPage57
dc.description.sdgObjectius de Desenvolupament Sostenible::3 - Salut i Benestar


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple