dc.contributor.author | Bernárdez Gil, Guillermo |
dc.contributor.author | Suárez-Varela Maciá, José Rafael |
dc.contributor.author | López Brescó, Albert |
dc.contributor.author | Wu, Bo |
dc.contributor.author | Xiao, Shihan |
dc.contributor.author | Cheng, Xiangle |
dc.contributor.author | Barlet Ros, Pere |
dc.contributor.author | Cabellos Aparicio, Alberto |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors |
dc.date.accessioned | 2022-02-03T14:12:21Z |
dc.date.available | 2022-02-03T14:12:21Z |
dc.date.issued | 2021 |
dc.identifier.citation | Bernárdez, G. [et al.]. Is machine learning ready for traffic engineering optimization? A: IEEE International Conference on Network Protocols. "2021 IEEE 29th International Conference on Network Protocols (ICNP 2021): virtual conference, November 1-5, 2021". Institute of Electrical and Electronics Engineers (IEEE), 2021, p. 1-11. ISBN 978-1-6654-4131-5. DOI 10.1109/ICNP52444.2021.9651930. |
dc.identifier.isbn | 978-1-6654-4131-5 |
dc.identifier.uri | http://hdl.handle.net/2117/361596 |
dc.description.abstract | Traffic Engineering (TE) is a basic building block of the Internet. In this paper, we analyze whether modern Machine Learning (ML) methods are ready to be used for TE optimization. We address this open question through a comparative analysis between the state of the art in ML and the state of the art in TE. To this end, we first present a novel distributed system for TE that leverages the latest advancements in ML. Our system implements a novel architecture that combines Multi-Agent Reinforcement Learning (MARL) and Graph Neural Networks (GNN) to minimize network congestion. In our evaluation, we compare our MARL+GNN system with DEFO, a network optimizer based on Constraint Programming that represents the state of the art in TE. Our experimental results show that the proposed MARL+GNN solution achieves equivalent performance to DEFO in a wide variety of network scenarios including three real-world network topologies. At the same time, we show that MARL+GNN can achieve significant reductions in execution time (from the scale of minutes with DEFO to a few seconds with our solution). |
dc.description.sponsorship | This work was supported by the Spanish MINECO under contract TEC2017-90034-C2-1-R (ALLIANCE), the Catalan Institution for Research and Advanced Studies (ICREA) and the Secretariat for Universities and Research of the Ministry of Business and Knowledge of the Government of Catalonia as well as the European Social Fund. |
dc.format.extent | 11 p. |
dc.language.iso | eng |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) |
dc.subject | Àrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors |
dc.subject.lcsh | Telecommunication -- Traffic -- Management |
dc.subject.lcsh | Neural networks (Computer science) |
dc.subject.lcsh | Machine learning |
dc.subject.other | Traffic engineering |
dc.subject.other | Routing optimization |
dc.subject.other | Multi-agent reinforcement learning |
dc.subject.other | Graph neural networks |
dc.title | Is machine learning ready for traffic engineering optimization? |
dc.type | Conference report |
dc.subject.lemac | Telecomunicació -- Tràfic -- Gestió |
dc.subject.lemac | Xarxes neuronals (Informàtica) |
dc.subject.lemac | Aprenentatge automàtic |
dc.contributor.group | Universitat Politècnica de Catalunya. CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla |
dc.identifier.doi | 10.1109/ICNP52444.2021.9651930 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://ieeexplore.ieee.org/document/9651930 |
dc.rights.access | Open Access |
local.identifier.drac | 32489972 |
dc.description.version | Postprint (author's final draft) |
dc.relation.projectid | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-90034-C2-1-R/ES/DISEÑANDO UNA INFRAESTRUCTURA DE RED 5G DEFINIDA MEDIANTE CONOCIMIENTO HACIA LA PROXIMA SOCIEDAD DIGITAL/ |
local.citation.author | Bernárdez, G.; Suárez-varela, J.; López, A.; Wu, B.; Xiao, S.; Cheng, X.; Barlet, P.; Cabellos-Aparicio, A. |
local.citation.contributor | IEEE International Conference on Network Protocols |
local.citation.publicationName | 2021 IEEE 29th International Conference on Network Protocols (ICNP 2021): virtual conference, November 1-5, 2021 |
local.citation.startingPage | 1 |
local.citation.endingPage | 11 |