Show simple item record

dc.contributor.authorBernárdez Gil, Guillermo
dc.contributor.authorSuárez-Varela Maciá, José Rafael
dc.contributor.authorLópez Brescó, Albert
dc.contributor.authorWu, Bo
dc.contributor.authorXiao, Shihan
dc.contributor.authorCheng, Xiangle
dc.contributor.authorBarlet Ros, Pere
dc.contributor.authorCabellos Aparicio, Alberto
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Arquitectura de Computadors
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.date.accessioned2022-02-03T14:12:21Z
dc.date.available2022-02-03T14:12:21Z
dc.date.issued2021
dc.identifier.citationBernárdez, G. [et al.]. Is machine learning ready for traffic engineering optimization? A: IEEE International Conference on Network Protocols. "2021 IEEE 29th International Conference on Network Protocols (ICNP 2021): virtual conference, November 1-5, 2021". Institute of Electrical and Electronics Engineers (IEEE), 2021, p. 1-11. ISBN 978-1-6654-4131-5. DOI 10.1109/ICNP52444.2021.9651930.
dc.identifier.isbn978-1-6654-4131-5
dc.identifier.urihttp://hdl.handle.net/2117/361596
dc.description.abstractTraffic Engineering (TE) is a basic building block of the Internet. In this paper, we analyze whether modern Machine Learning (ML) methods are ready to be used for TE optimization. We address this open question through a comparative analysis between the state of the art in ML and the state of the art in TE. To this end, we first present a novel distributed system for TE that leverages the latest advancements in ML. Our system implements a novel architecture that combines Multi-Agent Reinforcement Learning (MARL) and Graph Neural Networks (GNN) to minimize network congestion. In our evaluation, we compare our MARL+GNN system with DEFO, a network optimizer based on Constraint Programming that represents the state of the art in TE. Our experimental results show that the proposed MARL+GNN solution achieves equivalent performance to DEFO in a wide variety of network scenarios including three real-world network topologies. At the same time, we show that MARL+GNN can achieve significant reductions in execution time (from the scale of minutes with DEFO to a few seconds with our solution).
dc.description.sponsorshipThis work was supported by the Spanish MINECO under contract TEC2017-90034-C2-1-R (ALLIANCE), the Catalan Institution for Research and Advanced Studies (ICREA) and the Secretariat for Universities and Research of the Ministry of Business and Knowledge of the Government of Catalonia as well as the European Social Fund.
dc.format.extent11 p.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Telemàtica i xarxes d'ordinadors
dc.subject.lcshTelecommunication -- Traffic -- Management
dc.subject.lcshNeural networks (Computer science)
dc.subject.lcshMachine learning
dc.subject.otherTraffic engineering
dc.subject.otherRouting optimization
dc.subject.otherMulti-agent reinforcement learning
dc.subject.otherGraph neural networks
dc.titleIs machine learning ready for traffic engineering optimization?
dc.typeConference report
dc.subject.lemacTelecomunicació -- Tràfic -- Gestió
dc.subject.lemacXarxes neuronals (Informàtica)
dc.subject.lemacAprenentatge automàtic
dc.contributor.groupUniversitat Politècnica de Catalunya. CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla
dc.identifier.doi10.1109/ICNP52444.2021.9651930
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9651930
dc.rights.accessOpen Access
local.identifier.drac32489972
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TEC2017-90034-C2-1-R/ES/DISEÑANDO UNA INFRAESTRUCTURA DE RED 5G DEFINIDA MEDIANTE CONOCIMIENTO HACIA LA PROXIMA SOCIEDAD DIGITAL/
local.citation.authorBernárdez, G.; Suárez-varela, J.; López, A.; Wu, B.; Xiao, S.; Cheng, X.; Barlet, P.; Cabellos-Aparicio, A.
local.citation.contributorIEEE International Conference on Network Protocols
local.citation.publicationName2021 IEEE 29th International Conference on Network Protocols (ICNP 2021): virtual conference, November 1-5, 2021
local.citation.startingPage1
local.citation.endingPage11


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record