Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.780 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Is machine learning ready for traffic engineering optimization?

Thumbnail
View/Open
2109.01445.pdf (1,613Mb)
Share:
 
 
10.1109/ICNP52444.2021.9651930
 
  View Usage Statistics
Cita com:
hdl:2117/361596

Show full item record
Bernárdez Gil, GuillermoMés informació
Suárez-Varela Maciá, José RafaelMés informacióMés informació
López Brescó, AlbertMés informació
Wu, Bo
Xiao, Shihan
Cheng, Xiangle
Barlet Ros, PereMés informacióMés informacióMés informació
Cabellos Aparicio, AlbertoMés informacióMés informacióMés informació
Document typeConference report
Defense date2021
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
ProjectDISEÑANDO UNA INFRAESTRUCTURA DE RED 5G DEFINIDA MEDIANTE CONOCIMIENTO HACIA LA PROXIMA SOCIEDAD DIGITAL (AEI-TEC2017-90034-C2-1-R)
Abstract
Traffic Engineering (TE) is a basic building block of the Internet. In this paper, we analyze whether modern Machine Learning (ML) methods are ready to be used for TE optimization. We address this open question through a comparative analysis between the state of the art in ML and the state of the art in TE. To this end, we first present a novel distributed system for TE that leverages the latest advancements in ML. Our system implements a novel architecture that combines Multi-Agent Reinforcement Learning (MARL) and Graph Neural Networks (GNN) to minimize network congestion. In our evaluation, we compare our MARL+GNN system with DEFO, a network optimizer based on Constraint Programming that represents the state of the art in TE. Our experimental results show that the proposed MARL+GNN solution achieves equivalent performance to DEFO in a wide variety of network scenarios including three real-world network topologies. At the same time, we show that MARL+GNN can achieve significant reductions in execution time (from the scale of minutes with DEFO to a few seconds with our solution).
CitationBernárdez, G. [et al.]. Is machine learning ready for traffic engineering optimization? A: IEEE International Conference on Network Protocols. "2021 IEEE 29th International Conference on Network Protocols (ICNP 2021): virtual conference, November 1-5, 2021". Institute of Electrical and Electronics Engineers (IEEE), 2021, p. 1-11. ISBN 978-1-6654-4131-5. DOI 10.1109/ICNP52444.2021.9651930. 
URIhttp://hdl.handle.net/2117/361596
DOI10.1109/ICNP52444.2021.9651930
ISBN978-1-6654-4131-5
Publisher versionhttps://ieeexplore.ieee.org/document/9651930
Collections
  • CBA - Sistemes de Comunicacions i Arquitectures de Banda Ampla - Ponències/Comunicacions de congressos [237]
  • Doctorat en Arquitectura de Computadors - Ponències/Comunicacions de congressos [232]
  • Departament d'Arquitectura de Computadors - Ponències/Comunicacions de congressos [1.849]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
2109.01445.pdf1,613MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina