New production matrices for geometric graphs
View/Open
Cita com:
hdl:2117/360864
Document typeArticle
Defense date2022-01-15
PublisherElsevier
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectTEORIA Y APLICACIONES DE CONFIGURACIONES DE PUNTOS Y REDES (AEI-PID2019-104129GB-I00)
CONNECT - Combinatorics of Networks and Computation (EC-H2020-734922)
GRAFOS Y GEOMETRIA: INTERACCIONES Y APLICACIONES (MINECO-MTM2015-63791-R)
CONNECT - Combinatorics of Networks and Computation (EC-H2020-734922)
GRAFOS Y GEOMETRIA: INTERACCIONES Y APLICACIONES (MINECO-MTM2015-63791-R)
Abstract
We use production matrices to count several classes of geometric graphs. We present novel production matrices for non-crossing partitions, connected geometric graphs, and k-angulations, which provide another, simple and elegant, way of counting the number of such objects. Counting geometric graphs is then equivalent to calculating the powers of a production matrix. Applying the technique of Riordan Arrays to these production matrices, we establish new formulas for the numbers of geometric graphs as well as combinatorial identities derived from the production matrices. Further, we obtain the characteristic polynomial and the eigenvectors of such production matrices.
CitationEsteban, G.; Huemer, C.; Silveira, R. New production matrices for geometric graphs. "Linear algebra and its applications", 15 Gener 2022, vol. 633, p. 244-280.
ISSN0024-3795
Files | Description | Size | Format | View |
---|---|---|---|---|
Production_matrices.pdf | Preprint version | 1,004Mb | View/Open |