On circles enclosing many points
View/Open
Cita com:
hdl:2117/360855
Document typeArticle
Defense date2021-10-01
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
We prove that every set of n red and n blue points in the plane contains a red and a blue point such that every circle through them encloses at least points of the set. This is a two-colored version of a problem posed by Neumann-Lara and Urrutia. We also show that every set S of n points contains two points such that every circle passing through them encloses at most points of S. The proofs make use of properties of higher order Voronoi diagrams, in the spirit of the work of Edelsbrunner, Hasan, Seidel and Shen on this topic. Closely related, we also study the number of collinear edges in higher order Voronoi diagrams and present several constructions.
CitationClaverol, M.; Huemer, C.; Martínez, A. On circles enclosing many points. "Discrete mathematics", 1 Octubre 2021, vol. 344, No 10, p. 112541:1-112541:10.
ISSN0012-365X
Files | Description | Size | Format | View |
---|---|---|---|---|
circles_11_02_2020a.pdf | 476,5Kb | View/Open |