Show simple item record

dc.contributor.authorHodásová, L'udmila
dc.contributor.authorAlemán Llansó, Carlos
dc.contributor.authorValle Mendoza, Luis Javier del
dc.contributor.authorLlanes Pitarch, Luis Miguel
dc.contributor.authorFargas Ribas, Gemma
dc.contributor.authorArmelín Diggroc, Elaine Aparecida
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Polímers i Biopolímers
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Química
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials
dc.date.accessioned2022-01-26T09:35:50Z
dc.date.available2022-01-26T09:35:50Z
dc.date.issued2021-09-23
dc.identifier.citationHodasova, L. [et al.]. 3D-printed polymer-infiltrated ceramic network with biocompatible adhesive to potentiate dental implant applications. "Materials", 23 Setembre 2021, vol. 14, núm. 19, p. 5513:1-5513:14.
dc.identifier.issn1996-1944
dc.identifier.urihttp://hdl.handle.net/2117/360720
dc.description.abstractThe aim of this work was to prepare and characterize polymer–ceramic composite material for dental applications, which must resist fracture and wear under extreme forces. It must also be compatible with the hostile environment of the oral cavity. The most common restorative and biocompatible copolymer, 2,2-bis(p-(2'-2-hydroxy-3'-methacryloxypropoxy)phenyl)propane and triethyleneglycol dimethacrylate, was combined with 3D-printed yttria-stabilized tetragonal zirconia scaffolds with a 50% infill. The proper scaffold deposition and morphology of samples with 50% zirconia infill were studied by means of X-ray computed microtomography and scanning electron microscopy. Samples that were infiltrated with copolymer were observed under compression stress, and the structure’s failure was recorded using an Infrared Vic 2DTM camera, in comparison with empty scaffolds. The biocompatibility of the composite material was ascertained with an MG-63 cell viability assay. The microtomography proves the homogeneous distribution of pores throughout the whole sample, whereas the presence of the biocompatible copolymer among the ceramic filaments, referred to as a polymer-infiltrated ceramic network (PICN), results in a safety “damper”, preventing crack propagation and securing the desired material flexibility, as observed by an infrared camera in real time. The study represents a challenge for future dental implant applications, demonstrating that it is possible to combine the fast robocasting of ceramic paste and covalent bonding of polymer adhesive for hybrid material stabilization.
dc.language.isoeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectÀrees temàtiques de la UPC::Enginyeria química
dc.subjectÀrees temàtiques de la UPC::Enginyeria dels materials
dc.subject.lcshDental implants
dc.subject.lcshPolymers
dc.subject.lcshThree-dimensional printing
dc.subject.other3D-printing
dc.subject.otherzirconia
dc.subject.otheracrylate polymers
dc.subject.otherpolymer infiltrated ceramic network
dc.title3D-printed polymer-infiltrated ceramic network with biocompatible adhesive to potentiate dental implant applications
dc.typeArticle
dc.subject.lemacImplants dentals
dc.subject.lemacPolímers
dc.subject.lemacImpressió 3D
dc.contributor.groupUniversitat Politècnica de Catalunya. IMEM-BRT- Innovation in Materials and Molecular Engineering - Biomaterials for Regenerative Therapies
dc.contributor.groupUniversitat Politècnica de Catalunya. PSEP - Polimers Sintètics: Estructura i Propietats. Polimers Biodegradables
dc.contributor.groupUniversitat Politècnica de Catalunya. CIEFMA - Centre d'Integritat Estructural, Fiabilitat i Micromecànica dels Materials
dc.identifier.doi10.3390/ma14195513
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://doi.org/10.3390/ma14195513
dc.rights.accessOpen Access
local.identifier.drac32503780
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/CIMNE/2PE/001-P-001646
local.citation.authorHodasova, L.; Aleman, C.; del Valle, LJ.; Llanes, L.; Fargas, G.; Armelin, E.
local.citation.publicationNameMaterials
local.citation.volume14
local.citation.number19
local.citation.startingPage5513:1
local.citation.endingPage5513:14


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record