Show simple item record

dc.contributor.authorRaymond Llorens, Santiago
dc.contributor.authorBonany Mariñosa, Mar
dc.contributor.authorLehmann, Cyril
dc.contributor.authorThorel, Emilie
dc.contributor.authorBenítez Iglesias, Raúl
dc.contributor.authorFranch Serracanta, Jordi
dc.contributor.authorCanal Barnils, Cristina
dc.contributor.authorGinebra Molins, Maria Pau
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Ciència i Enginyeria dels Materials
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Biomèdica
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials
dc.date.accessioned2022-01-20T13:26:26Z
dc.date.available2022-01-20T13:26:26Z
dc.date.issued2021-11-01
dc.identifier.citationRaymond, S. [et al.]. Hydrothermal processing of 3D-printed calcium phosphate scaffolds enhances bone formation in vivo: a comparison with biomimetic treatment. "Acta biomaterialia", 1 Novembre 2021, vol. 135, p. 671-688.
dc.identifier.issn1742-7061
dc.identifier.urihttp://hdl.handle.net/2117/360223
dc.description.abstractHydrothermal (H) processes accelerate the hydrolysis reaction of a-tricalcium phosphate (a-TCP) compared to the long-established biomimetic (B) treatments. They are of special interest for patient-specific 3D-printed bone graft substitutes, where the manufacturing time represents a critical constraint. Altering the reaction conditions has implications for the physicochemical properties of the reaction product. However, the impact of the changes produced by the hydrothermal reaction on the in vivo performance was hitherto unknown. The present study compares the bone regeneration potential of 3D-printed a-TCP scaffolds hardened using these two treatments in rabbit condyle monocortical defects. Although both consolidation processes resulted in biocompatible scaffolds with osseointegrative and osteoconductive properties, the amount of newly formed bone increased by one third in the hydrothermal vs the biomimetic samples. B and H scaffolds consisted mostly of high specific surface area calcium-deficient hydroxyapatite (38 and 27 m2 g-1, respectively), with H samples containing also 10 wt.% ß-tricalcium phosphate (ß-TCP). The shrinkage produced during the consolidation process was shown to be very small in both cases, below 3%, and smaller for H than for B samples. The differences in the in vivo performance were mainly attributed to the distinct crystallisation nanostructures, which proved to have a major impact on permeability and protein adsorption capacity, using BSA as a model protein, with B samples being highly impermeable. Given the crucial role that soluble proteins play in osteogenesis, this is proposed to be a relevant factor behind the distinct in vivo performances observed for the two materials. Statement of significance The possibility to accelerate the consolidation of self-setting calcium phosphate inks through hydrothermal treatments has aroused great interest due to the associated advantages for the development of 3D-printed personalised bone scaffolds. Understanding the implications of this approach on the in vivo performance of the scaffolds is of paramount importance. This study compares, for the first time, this treatment to the long-established biomimetic setting strategy in terms of osteogenic potential in vivo in a rabbit model, and relates the results obtained to the physicochemical properties of the 3D-printed scaffolds (composition, crystallinity, nanostructure, nanoporosity) and their interaction with soluble proteins.
dc.format.extent18 p.
dc.language.isoeng
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica::Biomaterials
dc.subject.lcshBiomimetics
dc.subject.other3D printing
dc.subject.otherBone scaffolds
dc.subject.otherCalcium phosphate
dc.subject.otherBiomimetic
dc.subject.otherHydrothermal
dc.subject.otherIn vivo
dc.titleHydrothermal processing of 3D-printed calcium phosphate scaffolds enhances bone formation in vivo: a comparison with biomimetic treatment
dc.typeArticle
dc.subject.lemacBiomimètica
dc.contributor.groupUniversitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
dc.contributor.groupUniversitat Politècnica de Catalunya. ANCORA - Anàlisi i control del ritme cardíac
dc.identifier.doi10.1016/j.actbio.2021.09.001
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1742706121005894
dc.rights.accessOpen Access
local.identifier.drac32046079
dc.description.versionPostprint (published version)
dc.contributor.covenanteeMimetis Biomaterials
dc.contributor.covenanteeInstitut de Recerca Sant Joan de Déu
dc.contributor.covenanteeUniversitat Autònoma de Barcelona
dc.contributor.covenanteeUniversitat de Barcelona. Departament de Genètica, Microbiologia i Estadística
dc.contributor.covenanteeInstitut de Bioenginyeria de Catalunya
local.citation.authorRaymond, S.; Bonany, M.; Lehmann, C.; Thorel, E.; Benitez, R.; Franch Serracanta, Jordi; Canal, C.; Ginebra, M.P.
local.citation.publicationNameActa biomaterialia
local.citation.volume135
local.citation.startingPage671
local.citation.endingPage688


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record