Show simple item record

dc.contributor.authorBrennan, Meadhbh Á.
dc.contributor.authorMonahan, David S.
dc.contributor.authorBrulin, Bénédicte
dc.contributor.authorGallinetti, Sara
dc.contributor.authorHumbert, Paul
dc.contributor.authorTringides, Christina
dc.contributor.authorCanal Barnils, Cristina
dc.contributor.authorGinebra Molins, Maria Pau
dc.contributor.authorLayrolle, Pierre
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciència i Enginyeria de Materials
dc.date.accessioned2022-01-20T11:37:15Z
dc.date.available2022-11-01T01:27:35Z
dc.date.issued2021-11-01
dc.identifier.citationBrennan, M. [et al.]. Biomimetic versus sintered macroporous calcium phosphate scaffolds enhanced bone regeneration and human mesenchymal stromal cell engraftment in calvarial defects. "Acta biomaterialia", 1 Novembre 2021, vol. 135, p. 689-704.
dc.identifier.issn1742-7061
dc.identifier.urihttp://hdl.handle.net/2117/360150
dc.description.abstractIn contrast to sintered calcium phosphates (CaPs) commonly employed as scaffolds to deliver mesenchymal stromal cells (MSCs) targeting bone repair, low temperature setting conditions of calcium deficient hydroxyapatite (CDHA) yield biomimetic topology with high specific surface area. In this study, the healing capacity of CDHA administering MSCs to bone defects is evaluated for the first time and compared with sintered beta-tricalcium phosphate (ß-TCP) constructs sharing the same interconnected macroporosity. Xeno-free expanded human bone marrow MSCs attached to the surface of the hydrophobic ß-TCP constructs, while infiltrating the pores of the hydrophilic CDHA. Implantation of MSCs on CaPs for 8 weeks in calvaria defects of nude mice exhibited complete healing, with bone formation aligned along the periphery of ß-TCP, and conversely distributed within the pores of CDHA. Human monocyte-osteoclast differentiation was inhibited in vitro by direct culture on CDHA compared to ß-TCP biomaterials and indirectly by administration of MSC-conditioned media generated on CDHA, while MSCs increased osteoclastogenesis in both CaPs in vivo. MSC engraftment was significantly higher in CDHA constructs, and also correlated positively with bone in-growth in scaffolds. These findings demonstrate that biomimetic CDHA are favorable carriers for MSC therapies and should be explored further towards clinical bone regeneration strategies. Statement of significance Delivery of mesenchymal stromal cells (MSCs) on calcium phosphate (CaP) biomaterials enhances reconstruction of bone defects. Traditional CaPs are produced at high temperature, but calcium deficient hydroxyapatite (CDHA) prepared at room temperature yields a surface structure more similar to native bone mineral. The objective of this study was to compare the capacity of biomimetic CDHA scaffolds with sintered ß-TCP scaffolds for bone repair mediated by MSCs for the first time. In vitro, greater cell infiltration occurred in CDHA scaffolds and following 8 weeks in vivo, MSC engraftment was higher in CDHA compared to ß-TCP, as was bone in-growth. These findings demonstrate the impact of material features such as surface structure, and highlight that CDHA should be explored towards clinical bone regeneration strategies.
dc.format.extent16 p.
dc.language.isoeng
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica::Biomaterials
dc.subject.lcshBone regeneration
dc.subject.lcshBiomimetics
dc.subject.otherCalcium deficient hydroxyapatite
dc.subject.otherBeta-tricalcium phosphate
dc.subject.otherBone regeneration
dc.subject.otherHuman bone marrow mesenchymal stromal cells
dc.subject.otherEngraftment
dc.titleBiomimetic versus sintered macroporous calcium phosphate scaffolds enhanced bone regeneration and human mesenchymal stromal cell engraftment in calvarial defects
dc.typeArticle
dc.subject.lemacBiomimètica
dc.subject.lemacOssos
dc.contributor.groupUniversitat Politècnica de Catalunya. BBT - Biomaterials, Biomecànica i Enginyeria de Teixits
dc.identifier.doi10.1016/j.actbio.2021.09.007
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/abs/pii/S174270612100595X
dc.rights.accessOpen Access
local.identifier.drac32260834
dc.description.versionPostprint (author's final draft)
dc.contributor.covenanteeUniversité de Nantes
dc.contributor.covenanteeHarvard University
dc.contributor.covenanteeNUIG National University of Ireland Galway
dc.contributor.covenanteeUniversité Toulouse III - Paul Sabatier
dc.contributor.covenanteeInstitut de Bioenginyeria de Catalunya
local.citation.authorBrennan, M.; Monahan, D.; Brulin, B.; Gallinetti , S.; Humbert, P.; Tringides , C.; Canal, C.; Ginebra, M.P.; Layrolle, P.
local.citation.publicationNameActa biomaterialia
local.citation.volume135
local.citation.startingPage689
local.citation.endingPage704


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record