Show simple item record

dc.contributor.authorLópez-Ortiz, Manuel
dc.contributor.authorZamora, Ricardo A.
dc.contributor.authorRemesh, Vikas
dc.contributor.authorHu, Chen
dc.contributor.authorCroce, Roberta
dc.contributor.authorvan Hulst, Niek F.
dc.contributor.authorGorostiza, Pau
dc.date.accessioned2022-01-20T11:12:26Z
dc.date.available2022-02-16T01:27:29Z
dc.date.issued2021-02-16
dc.identifier.citationLópez-Ortiz, M. [et al.]. Fast photochronoamperometry of photosynthetic complexes for biosensors and electron transport studies. "ACS Sensors", 16 Febrer 2021, vol. 6, núm. 2, p. 581-587.
dc.identifier.urihttp://hdl.handle.net/2117/360136
dc.description.abstractPhotosynthetic reactions in plants, algae, and cyanobacteria are driven by photosystem I and photosystem II complexes, which specifically reduce or oxidize partner redox biomolecules. Photosynthetic complexes can also bind synthetic organic molecules, which inhibit their photoactivity and can be used both to study the electron transport chain and as herbicides and algicides. Thus, their development, characterization, and sensing bears fundamental and applied interest. Substantial efforts have been devoted to developing photosensors based on photosystem II to detect compounds that bind to the plastoquinone sites of this complex. In comparison, photosystem I based sensors have received less attention and could be used to identify novel substances displaying phytotoxic effects, including those obtained from natural product extracts. We have developed a robust procedure to functionalize gold electrodes with photo- and redox-active photosystem I complexes based on transparent gold and a thiolate self-assembled monolayer, and we have obtained reproducible electrochemical photoresponses. Chronoamperometric recordings have allowed us to measure photocurrents in the presence of the viologen derivative paraquat at concentrations below 100 nM under lock-in operation and a sensor dynamic range spanning six orders of magnitude up to 100 mM. We have modeled their time course to identify the main electrochemical processes and limiting steps in the electron transport chain. Our results allow us to isolate the contributions from photosystem I and the redox mediator, and evaluate photocurrent features (spectral and power dependence, fast transient kinetics) that could be used as a sensing signal to detect other inhibitors and modulators of photosystem I activity.
dc.format.extent7 p.
dc.language.isoeng
dc.publisherACS
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshBiosensors
dc.subject.otherbiosensors
dc.titleFast photochronoamperometry of photosynthetic complexes for biosensors and electron transport studies
dc.typeArticle
dc.subject.lemacBiosensors
dc.identifier.doi10.1021/acssensors.1c00179
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://pubs.acs.org/doi/10.1021/acssensors.1c00179
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
dc.relation.projectidCEX2019-000910-S
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-096875-B-I00/ES/ACOPLAMIENTO OPTICO RESONANTE GIGANTE/
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/670949/EU/LightNet/LightNet
dc.relation.projectid74190117
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-111493RB-I00/ES/NEUROMODULACION DE LAS VIAS INHIBITORIAS MEDIANTE FOTOFARMACOLOGIA ACTIVADA POR LUZ ROJA E INFRARROJA./
dc.relation.projectidCTQ2016-80066-R
dc.relation.projectid2017-SGR-1369
dc.relation.projectid2017-SGR-1442
local.citation.publicationNameACS Sensors
local.citation.volume6
local.citation.number2
local.citation.startingPage581
local.citation.endingPage587


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record