GAN-based image colourisation with feature reconstruction loss
View/Open
Master_Thesis_Laia_Tarres.pdf (12,40Mb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/360067
CovenanteeBritish Broadcasting Corporation
Document typeMaster thesis
Date2021-05-28
Rights accessRestricted access - author's decision
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Automatic image colourisation is a complex and ambiguous task due to having multiple correct solutions. Previous approaches have resulted in desaturated results unless relying on a significant user interaction. In this thesis we study the state of the art for colourisation and we propose an automatic colourisation approaches based on generative adversarial networks that incorporates a feature reconstruction loss during training. The generative network is framed in an adversarial model that learns how to colourise by incorporating perceptual understanding of the colour. Qualitative and quantitative results show the capacity of the proposed method to colourise images in a realistic way, boosting the colourfulness and perceptual realism of previous GAN-based methodologies. We also study and propose a second approach that incorporates segmentation information in the GAN framework and obtain quantitative and qualitative results.
DegreeMÀSTER UNIVERSITARI EN TECNOLOGIES AVANÇADES DE TELECOMUNICACIÓ (Pla 2019)
Files | Description | Size | Format | View |
---|---|---|---|---|
Master_Thesis_Laia_Tarres.pdf![]() | 12,40Mb | Restricted access |