Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
76.372 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master's degree in Advanced Telecommunication Technologies (MATT)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Master's degree in Advanced Telecommunication Technologies (MATT)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

GAN-based image colourisation with feature reconstruction loss

Thumbnail
View/Open
Master_Thesis_Laia_Tarres.pdf (12,40Mb) (Restricted access)   Request copy 

Què és aquest botó?

Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:

  • Disposem del correu electrònic de l'autor
  • El document té una mida inferior a 20 Mb
  • Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/360067

Show full item record
Tarrés Benet, LaiaMés informacióMés informació
Tutor / directorGiró Nieto, XavierMés informacióMés informació; Mrak, Marta
CovenanteeBritish Broadcasting Corporation
Document typeMaster thesis
Date2021-05-28
Rights accessRestricted access - author's decision
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Automatic image colourisation is a complex and ambiguous task due to having multiple correct solutions. Previous approaches have resulted in desaturated results unless relying on a significant user interaction. In this thesis we study the state of the art for colourisation and we propose an automatic colourisation approaches based on generative adversarial networks that incorporates a feature reconstruction loss during training. The generative network is framed in an adversarial model that learns how to colourise by incorporating perceptual understanding of the colour. Qualitative and quantitative results show the capacity of the proposed method to colourise images in a realistic way, boosting the colourfulness and perceptual realism of previous GAN-based methodologies. We also study and propose a second approach that incorporates segmentation information in the GAN framework and obtain quantitative and qualitative results.
SubjectsImage processing--Digital techniques, Imatges--Processament--Tècniques digitals
DegreeMÀSTER UNIVERSITARI EN TECNOLOGIES AVANÇADES DE TELECOMUNICACIÓ (Pla 2019)
URIhttp://hdl.handle.net/2117/360067
Collections
  • Màsters oficials - Master's degree in Advanced Telecommunication Technologies (MATT) [205]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Master_Thesis_Laia_Tarres.pdfBlocked12,40MbPDFRestricted access

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina