NbSe2 meets C2N: a 2D-2D heterostructure catalysts as multifunctional polysulfide mediator in ultra-long-life lithium–sulfur batteries
View/Open
Cita com:
hdl:2117/359124
Document typeArticle
Defense date2021-09-23
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
The shuttle effect and sluggish conversion kinetics of lithium polysulfides (LiPS) hamper the practical application of lithium–sulfur batteries (LSBs). Toward overcoming these limitations, herein an in situ grown C2N@NbSe2 heterostructure is presented with remarkable specific surface area, as a Li–S catalyst and LiPS absorber. Density functional theory (DFT) calculations and experimental results comprehensively demonstrate that C2N@NbSe2 is characterized by a suitable electronic structure and charge rearrangement that strongly accelerates the LiPS electrocatalytic conversion. In addition, heterostructured C2N@NbSe2 strongly interacts with LiPS species, confining them at the cathode. As a result, LSBs cathodes based on C2N@NbSe2/S exhibit a high initial capacity of 1545 mAh g-1 at 0.1 C. Even more excitingly, C2N@NbSe2/S cathodes are characterized by impressive cycling stability with only 0.012% capacity decay per cycle after 2000 cycles at 3 C. Even at a sulfur loading of 5.6 mg cm-2, a high areal capacity of 5.65 mAh cm-2 is delivered. These results demonstrate that C2N@NbSe2 heterostructures can act as multifunctional polysulfide mediators to chemically adsorb LiPS, accelerate Li-ion diffusion, chemically catalyze LiPS conversion, and lower the energy barrier for Li2S precipitation/decomposition, realizing the “adsorption-diffusion-conversion” of polysulfides.
CitationYang, D. [et al.]. NbSe2 meets C2N: a 2D-2D heterostructure catalysts as multifunctional polysulfide mediator in ultra-long-life lithium–sulfur batteries. "Advanced Energy Materials", 23 Setembre 2021, vol. 11, núm. 36, p. 2101250:1-2101250:13.
Award-winningAward-winning
ISSN1614-6840
Publisher versionhttps://onlinelibrary.wiley.com/doi/10.1002/aenm.202101250
Files | Description | Size | Format | View |
---|---|---|---|---|
C2N_NbSe2.pdf | 1,984Mb | View/Open |