Show simple item record

dc.contributor.authorRadhakrishnan, Sarath
dc.contributor.authorAdu Gyamfi, Lawrence
dc.contributor.authorMiró Jané, Arnau
dc.contributor.authorFont García, Bernat
dc.contributor.authorCalafell Sandiumenge, Joan
dc.contributor.authorLehmkuhl Barba, Oriol
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Ciència i Tecnologia Aeroespacials
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.contributor.otherBarcelona Supercomputing Center
dc.date.accessioned2021-12-16T12:00:47Z
dc.date.available2021-12-16T12:00:47Z
dc.date.issued2021
dc.identifier.citationRadhakrishnan, S. [et al.]. A data-driven wall-shear stress model for LES using gradient boosted decision trees. A: International Conference on High Performance Computing. "High Performance Computing: ISC High Performance Digital 2021 International Workshops: Frankfurt am Main, Germany, June 24–July 2, 2021: revised selected papers". Springer Nature, 2021, p. 105-121. ISBN 978-3-030-90539-2. DOI 10.1007/978-3-030-90539-2_7.
dc.identifier.isbn978-3-030-90539-2
dc.identifier.urihttp://hdl.handle.net/2117/358666
dc.description.abstractWith the recent advances in machine learning, data-driven strategies could augment wall modeling in large eddy simulation (LES). In this work, a wall model based on gradient boosted decision trees is presented. The model is trained to learn the boundary layer of a turbulent channel flow so that it can be used to make predictions for significantly different flows where the equilibrium assumptions are valid. The methodology of building the model is presented in detail. The experiment conducted to choose the data for training is described. The trained model is tested a posteriori on a turbulent channel flow and the flow over a wall-mounted hump. The results from the tests are compared with that of an algebraic equilibrium wall model, and the performance is evaluated. The results show that the model has succeeded in learning the boundary layer, proving the effectiveness of our methodology of data-driven model development, which is extendable to complex flows.
dc.description.sponsorshipThis work was funded as part of the European Project HiFi-TURB which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 814837. Sarath Radhakrishnan acknowledges the financial support by the Ministerio de Ciencia y Innovación y Universidades, for the grant, Ayudas para contratos predoctorales para la formación de doctores (Ref: BES-2017-081982). Oriol Lehmkuhl has been partially supported by a Ramon y Cajal postdoctoral contract (Ref: RYC2018-025949- I). We also acknowledge the Barcelona Supercomputing Center for awarding us access to the MareNostrum IV machine based in Barcelona, Spain.
dc.format.extent17 p.
dc.language.isoeng
dc.publisherSpringer Nature
dc.subjectÀrees temàtiques de la UPC::Aeronàutica i espai
dc.subjectÀrees temàtiques de la UPC::Física::Física de fluids
dc.subject.lcshMachine learning
dc.subject.lcshFluid dynamics
dc.subject.otherXGBoost
dc.subject.otherTurbulence
dc.subject.otherWall mode
dc.titleA data-driven wall-shear stress model for LES using gradient boosted decision trees
dc.typeConference report
dc.subject.lemacAprenentatge automàtic
dc.subject.lemacDinàmica de fluids
dc.contributor.groupUniversitat Politècnica de Catalunya. TUAREG - Turbulence and Aerodynamics in Mechanical and Aerospace Engineering Research Group
dc.identifier.doi10.1007/978-3-030-90539-2_7
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://link.springer.com/chapter/10.1007/978-3-030-90539-2_7
dc.rights.accessOpen Access
local.identifier.drac32294962
dc.description.versionPostprint (author's final draft)
local.citation.authorRadhakrishnan, S.; Adu, L.; Miró, A.; Font, B.; Calafell, J.; Lehmkuhl , O.
local.citation.contributorInternational Conference on High Performance Computing
local.citation.publicationNameHigh Performance Computing: ISC High Performance Digital 2021 International Workshops: Frankfurt am Main, Germany, June 24–July 2, 2021: revised selected papers
local.citation.startingPage105
local.citation.endingPage121


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record