Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.752 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Física
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament de Física
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A data-driven wall-shear stress model for LES using gradient boosted decision trees

Thumbnail
View/Open
Manuscript_isc2021.pdf (1,837Mb)
Share:
 
 
10.1007/978-3-030-90539-2_7
 
  View Usage Statistics
Cita com:
hdl:2117/358666

Show full item record
Radhakrishnan, SarathMés informació
Adu Gyamfi, Lawrence
Miró Jané, ArnauMés informacióMés informacióMés informació
Font García, Bernat
Calafell Sandiumenge, JoanMés informacióMés informació
Lehmkuhl Barba, OriolMés informació
Document typeConference report
Defense date2021
PublisherSpringer Nature
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
With the recent advances in machine learning, data-driven strategies could augment wall modeling in large eddy simulation (LES). In this work, a wall model based on gradient boosted decision trees is presented. The model is trained to learn the boundary layer of a turbulent channel flow so that it can be used to make predictions for significantly different flows where the equilibrium assumptions are valid. The methodology of building the model is presented in detail. The experiment conducted to choose the data for training is described. The trained model is tested a posteriori on a turbulent channel flow and the flow over a wall-mounted hump. The results from the tests are compared with that of an algebraic equilibrium wall model, and the performance is evaluated. The results show that the model has succeeded in learning the boundary layer, proving the effectiveness of our methodology of data-driven model development, which is extendable to complex flows.
CitationRadhakrishnan, S. [et al.]. A data-driven wall-shear stress model for LES using gradient boosted decision trees. A: International Conference on High Performance Computing. "High Performance Computing: ISC High Performance Digital 2021 International Workshops: Frankfurt am Main, Germany, June 24–July 2, 2021: revised selected papers". Springer Nature, 2021, p. 105-121. ISBN 978-3-030-90539-2. DOI 10.1007/978-3-030-90539-2_7. 
URIhttp://hdl.handle.net/2117/358666
DOI10.1007/978-3-030-90539-2_7
ISBN978-3-030-90539-2
Publisher versionhttps://link.springer.com/chapter/10.1007/978-3-030-90539-2_7
Collections
  • Departament de Física - Ponències/Comunicacions de congressos [622]
  • Doctorat en Ciència i Tecnologia Aeroespacials - Ponències/Comunicacions de congressos [59]
  • Computer Applications in Science & Engineering - Ponències/Comunicacions de congressos [67]
  • TUAREG - Turbulence and Aerodynamics in Mechanical and Aerospace Engineering Research Group - Ponències/Comunicacions de congressos [60]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Manuscript_isc2021.pdf1,837MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina