Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

58.714 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Computer Sciences
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A trainable monogenic ConvNet layer robust in front of large contrast changes in image classification

Thumbnail
View/Open
A_trainable_monogenic_ConvNet_layer_robust_in_front_of_large_contrast_changes_in_image_classification.pdf (5,637Mb)
Share:
 
 
10.1109/ACCESS.2021.3128552
 
  View Usage Statistics
Cita com:
hdl:2117/357954

Show full item record
Moya Sánchez, Eduardo Ulises
Xambó Descamps, SebastiánMés informació
Sánchez-Pérez, Abraham
Salazar Colores, Sebastián
Cortés García, Claudio UlisesMés informacióMés informacióMés informació
Document typeArticle
Defense date2021-12-20
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessOpen Access
Attribution 4.0 International
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution 4.0 International
Abstract
Convolutional Neural Networks (ConvNets) at present achieve remarkable performance in image classification tasks. However, current ConvNets cannot guarantee the capabilities of the mammalian visual systems such as invariance to contrast and illumination changes. Some ideas to overcome the illumination and contrast variations usually have to be tuned manually and tend to fail when tested with other types of data degradation. In this context, we present a new bio-inspired entry layer, M6, which detects low-level geometric features (lines, edges, and orientations) which are similar to patterns detected by the V1 visual cortex. This new trainable layer is capable of coping with image classification even with large contrast variations. The explanation for this behavior is the monogenic signal geometry, which represents each pixel value in a 3D space using quaternions, a fact that confers a degree of explainability to the networks. We compare M6 with a conventional convolutional layer (C) and a deterministic quaternion local phase layer (Q9). The experimental setup is designed to evaluate the robustness of our M6 enriched ConvNet model and includes three architectures, four datasets, three types of contrast degradation (including non-uniform haze degradations). The numerical results reveal that the models with M6 are the most robust in front of any kind of contrast variations. This amounts to a significant enhancement of the C models, which usually have reasonably good performance only when the same training and test degradation are used, except for the case of maximum degradation. Moreover, the Structural Similarity Index Measure (SSIM) is used to analyze and explain the robustness effect of the M6 feature maps under any kind of contrast degradations.
CitationMoya, E. [et al.]. A trainable monogenic ConvNet layer robust in front of large contrast changes in image classification. "IEEE access", 20 Desembre 2021, vol. 9, p. 163735 - 163746. 
URIhttp://hdl.handle.net/2117/357954
DOI10.1109/ACCESS.2021.3128552
ISSN2169-3536
Publisher versionhttps://ieeexplore.ieee.org/document/9615499
Collections
  • Computer Sciences - Articles de revista [272]
  • Departament de Ciències de la Computació - Articles de revista [941]
  • KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic - Articles de revista [112]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
A_trainable_mon ... n_image_classification.pdf5,637MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina