dc.contributor.author | Rahmani, Vahid |
dc.contributor.author | Pelechano Gómez, Núria |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Ciències de la Computació |
dc.date.accessioned | 2021-12-02T10:02:06Z |
dc.date.issued | 2022-02 |
dc.identifier.citation | Rahmani, V.; Pelechano, N. Towards a human-like approach to path finding. "Computers and graphics", Febrer 2022, vol. 102, p. 164-174. |
dc.identifier.issn | 0097-8493 |
dc.identifier.uri | http://hdl.handle.net/2117/357635 |
dc.description.abstract | Path finding for autonomous agents has been traditionally driven by finding optimal paths, typically by using A* search or any of its variants. When it comes to simulating virtual humanoids, traditional approaches rarely consider aspects of human memory or orientation. In this work, we propose a new path finding algorithm, inspired by current research regarding how the brain learns and builds cognitive maps. Our method represents the space as a hexagonal grid with counters, based on brain research that has investigated how memory cells are fired. Our path finder then combines a method for exploring unknown environments while building such a cognitive map, with an A* search using a modified heuristic that takes into account the cognitive map. The resulting paths show how as the agent learns the environment, the paths become shorter and more consistent with the optimal A* search. Moreover, we run a perceptual study to demonstrate that the viewers could successfully identify the intended level of knowledge of the simulated agents. This line of research could enhance the believability of autonomous agents’ path finding in video games and other VR applications. |
dc.description.sponsorship | This work was partly funded by the Spanish Ministry of Economy, Industry and Competitiveness under Grant No. TIN2017- 88515-C2-1-R. |
dc.format.extent | 11 p. |
dc.language.iso | eng |
dc.publisher | Elsevier |
dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International |
dc.rights | ©2021 Elsevier |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Infografia |
dc.subject.lcsh | Intelligent agents (Computer software) |
dc.subject.lcsh | Virtual reality |
dc.subject.other | Pathfinding |
dc.subject.other | Neuroscience based simulation |
dc.subject.other | Autonomous agents |
dc.title | Towards a human-like approach to path finding |
dc.type | Article |
dc.subject.lemac | Agents intel·ligents (Programari) |
dc.subject.lemac | Realitat virtual |
dc.contributor.group | Universitat Politècnica de Catalunya. ViRVIG - Grup de Recerca en Visualització, Realitat Virtual i Interacció Gràfica |
dc.identifier.doi | 10.1016/j.cag.2021.08.020 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://www.sciencedirect.com/science/article/abs/pii/S0097849321001849 |
dc.rights.access | Restricted access - publisher's policy |
local.identifier.drac | 32106438 |
dc.description.version | Postprint (author's final draft) |
dc.relation.projectid | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-88515-C2-1-R/ES/VISUALIZACION, MODELADO, SIMULACION E INTERACCION CON MODELOS 3D. APLICACIONES EN CIENCIAS DE LA VIDA Y ENTORNOS RURALES Y URBANOS/ |
dc.date.lift | 2023-09-02 |
local.citation.author | Rahmani, V.; Pelechano, N. |
local.citation.publicationName | Computers and graphics |
local.citation.volume | 102 |
local.citation.startingPage | 164 |
local.citation.endingPage | 174 |