Show simple item record

dc.contributor.authorRojas Dueñas, Gabriel
dc.contributor.authorRiba Ruiz, Jordi-Roger
dc.contributor.authorMoreno Eguilaz, Juan Manuel
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Elèctrica
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Elèctrica
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
dc.date.accessioned2021-11-18T13:45:03Z
dc.date.available2021-11-18T13:45:03Z
dc.date.issued2021-10-26
dc.identifier.citationRojas, G.; Riba, J.; Moreno-Eguilaz, J.M. CNN-LSTM-based prognostics of bidirectional converters for electric vehicles' machine. "Sensors", 26 Octubre 2021, vol. 21, núm. 21, p. 7079:1-7079:18.
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/2117/356678
dc.description.abstractThis paper proposes an approach to estimate the state of health of DC-DC converters that feed the electrical system of an electric vehicle. They have an important role in providing a smooth and rectified DC voltage to the electric machine. Thus, it is important to diagnose the actual status and predict the future performance of the converter and specifically of the electrolytic capacitors, in order to avoid malfunctioning and failures, since it is known they have the highest failure rates among power converter components. To this end, accelerated aging tests of the electrolytic capacitors are performed by applying an electrical overstress. The gathered data are used to train a CNN-LSTM model that is capable of predicting the future values of the capacitance and the equivalent series resistance (ESR) of the electrolytic capacitor. This model can be used to estimate the remaining useful life of the device, thus, increasing the reliability of the system and ensuring an adequate operating condition of the electric motor.
dc.language.isoeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria elèctrica
dc.subjectÀrees temàtiques de la UPC::Enginyeria electrònica
dc.subject.lcshSensors
dc.subject.lcshPower electronics
dc.subject.lcshElectric vehicles
dc.subject.otherPower converters
dc.subject.otherElectric vehicles
dc.subject.otherFault diagnosis
dc.subject.otherAccelerated aging tests
dc.subject.otherArtificialneural networks
dc.titleCNN-LSTM-based prognostics of bidirectional converters for electric vehicles’ machine
dc.typeArticle
dc.subject.lemacSensors
dc.subject.lemacElectrònica de potència
dc.subject.lemacVehicles elèctrics
dc.contributor.groupUniversitat Politècnica de Catalunya. MCIA - Motion Control and Industrial Applications Research Group
dc.identifier.doi10.3390/s21217079
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/21/21/7079
dc.rights.accessOpen Access
local.identifier.drac32153846
dc.description.versionPostprint (published version)
local.citation.authorRojas, G.; Riba, J.; Moreno-Eguilaz, J.M.
local.citation.publicationNameSensors
local.citation.volume21
local.citation.number21
local.citation.startingPage7079:1
local.citation.endingPage7079:18


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record