Show simple item record

dc.contributor.authorCarmona Mejías, Ángeles
dc.contributor.authorEncinas Bachiller, Andrés Marcos
dc.contributor.authorMitjana Riera, Margarida
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2021-11-11T12:27:43Z
dc.date.available2021-11-11T12:27:43Z
dc.date.issued2021-04-27
dc.identifier.citationCarmona, A.; Encinas, A.; Mitjana, M. A combinatorial expression for the group inverse of symmetric M-matrices. "Special Matrices", 27 Abril 2021, vol. 9, p. 275-296.
dc.identifier.issn2300-7451
dc.identifier.urihttp://hdl.handle.net/2117/356136
dc.description.abstractBy using combinatorial techniques, we obtain an extension of the matrix-tree theorem for general symmetric M-matrices with no restrictions, this means that we do not have to assume the diagonally domi nance hypothesis. We express the group inverse of a symmetric M–matrix in terms of the weight of spanning rooted forests. In fact, we give a combinatorial expression for both the determinant of the considered ma trix and the determinant of any submatrix obtained by deleting a row and a column. Moreover, the singular case is obtained as a limit case when certain parameter goes to zero. In particular, we recover some known results regarding trees. As examples that illustrate our results we give the expressions for the Group inverse of any symmetric M-matrix of order two and three. We also consider the case of the cycle C4 an example of a non-contractible situation topologically di erent from a tree. Finally, we obtain some relations between com binatorial numbers, such as Horadam, Fibonacci or Pell numbers and the number of spanning rooted trees on a path
dc.format.extent22 p.
dc.language.isoeng
dc.publisherDe Gruytr
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.titleA combinatorial expression for the group inverse of symmetric M-matrices
dc.typeArticle
dc.contributor.groupUniversitat Politècnica de Catalunya. MAPTHE - Anàlisi matricial i Teoria Discreta del Potencial
dc.identifier.doi10.1515/spma-2020-0137
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::05 Combinatorics::05C Graph theory
dc.subject.amsClassificació AMS::15 Linear and multilinear algebra; matrix theory
dc.relation.publisherversionhttps://www.degruyter.com/document/doi/10.1515/spma-2020-0137/html
dc.rights.accessOpen Access
local.identifier.drac32010240
dc.description.versionPostprint (published version)
local.citation.authorCarmona, A.; Encinas, A.; Mitjana, M.
local.citation.publicationNameSpecial Matrices
local.citation.volume9
local.citation.startingPage275
local.citation.endingPage296


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record