A combinatorial expression for the group inverse of symmetric M-matrices

Ver/Abrir
Cita com:
hdl:2117/356136
Tipo de documentoArtículo
Fecha de publicación2021-04-27
EditorDe Gruytr
Condiciones de accesoAcceso abierto
Salvo que se indique lo contrario, los contenidos
de esta obra estan sujetos a la licencia de Creative Commons
:
Reconocimiento-NoComercial-SinObraDerivada 3.0 España
Resumen
By using combinatorial techniques, we obtain an extension of the matrix-tree theorem for general symmetric M-matrices with no restrictions, this means that we do not have to assume the diagonally domi nance hypothesis. We express the group inverse of a symmetric M–matrix in terms of the weight of spanning rooted forests. In fact, we give a combinatorial expression for both the determinant of the considered ma trix and the determinant of any submatrix obtained by deleting a row and a column. Moreover, the singular case is obtained as a limit case when certain parameter goes to zero. In particular, we recover some known results regarding trees. As examples that illustrate our results we give the expressions for the Group inverse of any symmetric M-matrix of order two and three. We also consider the case of the cycle C4 an example of a non-contractible situation topologically di erent from a tree. Finally, we obtain some relations between com binatorial numbers, such as Horadam, Fibonacci or Pell numbers and the number of spanning rooted trees on a path
CitaciónCarmona, A.; Encinas, A.; Mitjana, M. A combinatorial expression for the group inverse of symmetric M-matrices. "Special Matrices", 27 Abril 2021, vol. 9, p. 275-296.
ISSN2300-7451
Versión del editorhttps://www.degruyter.com/document/doi/10.1515/spma-2020-0137/html
Ficheros | Descripción | Tamaño | Formato | Ver |
---|---|---|---|---|
10.1515_spma-2020-0137.pdf | 983,9Kb | Ver/Abrir |