Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.690 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • MNT - Grup de Recerca en Micro i Nanotecnologies
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • MNT - Grup de Recerca en Micro i Nanotecnologies
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Combinatorial and machine learning approaches for the analysis of Cu2ZnGeSe4: influence of the off-stoichiometry on defect formation and solar cell performance

Thumbnail
View/Open
d1ta01299a.pdf (3,206Mb)
 
10.1039/d1ta01299a
 
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/356118

Show full item record
Grau Luque, Enric
Anefnaf, Ikram
Benhaddou, Nada
Fonoll Rubio, Robert
Becerril Romero, Ignacio
Aazou, Safae
Saucedo Silva, Edgardo AdemarMés informacióMés informacióMés informació
Sekkat, Zouheir
Pérez Rodríguez, Alejandro
Izquierdo Roca, Víctor
Guc, MaximMés informació
Document typeArticle
Defense date2021-04-28
PublisherRoyal Society of Chemistry (RSC)
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Solar cells based on quaternary kesterite compounds like Cu2ZnGeSe4 are complex systems where the variation of one parameter can result in changes in the whole system, and, as consequence, in the global performance of the devices. In this way, analyses that take into account this complexity are necessary in order to overcome the existing limitations of this promising Earth-abundant photovoltaic technology. This study presents a combinatorial approach for the analysis of Cu2ZnGeSe4 based solar cells. A compositional graded sample containing almost 200 solar cells with different [Zn]/[Ge] compositions is analyzed by means of X-ray fluorescence and Raman spectroscopy, and the results are correlated with the optoelectronic parameters of the different cells. The analysis results in a deep understanding of the stoichiometric limits and point defects formation in the Cu2ZnGeSe4 compound, and shows the influence of these parameters on the performance of the devices. Then, intertwined connections between the compositional, vibrational and optoelectronic properties of the cells are revealed using a complex analytical approach. This is further extended using a machine learning algorithm. The latter confirms the correlation between the properties of the Cu2ZnGeSe4 compound and the optoelectronic parameters, and also allows proposing a methodology for device performance prediction that is compatible with both research and industrial process monitoring environments. As such, this work not only provides valuable insights for understanding and further developing the Cu2ZnGeSe4 photovoltaic technology, but also gives a practical example of the potential of combinatorial analysis and machine learning for the study of complex systems in materials research.
CitationGrau, E. [et al.]. Combinatorial and machine learning approaches for the analysis of Cu2ZnGeSe4: influence of the off-stoichiometry on defect formation and solar cell performance. "Journal of materials chemistry A", 28 Abril 2021, vol. 9, núm. 16, p. 10466-10476. 
URIhttp://hdl.handle.net/2117/356118
DOI10.1039/d1ta01299a
ISSN2050-7488
Publisher versionhttps://pubs.rsc.org/en/content/articlelanding/2021/TA/D1TA01299A
Collections
  • MNT - Grup de Recerca en Micro i Nanotecnologies - Articles de revista [346]
  • IREC - Catalonia Institute for Energy Research - Articles de revista [91]
  • Departament d'Enginyeria Electrònica - Articles de revista [1.664]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
d1ta01299a.pdf3,206MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina