Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.603 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • KRD - Cinemàtica i Disseny de Robots
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • KRD - Cinemàtica i Disseny de Robots
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A branch-and-prune method to solve closure equations in dual quaternions

Thumbnail
View/Open
2462-A-branch-and-prune-method-to-solve-closure-equations-in-dual-quaternions.pdf (2,132Mb)
 
10.1016/j.mechmachtheory.2021.104424
 
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/355122

Show full item record
Shabani, Arya
Porta Pleite, Josep MariaMés informacióMés informació
Thomas, FedericoMés informacióMés informacióMés informació
Document typeArticle
Defense date2021
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectPLANIFICACION CINETODINAMICA DE MOVIMIENTOS ROBOTICOS EFICIENTES Y AGILES (AEI-DPI2017-88282-P)
Abstract
Using dual quaternions, the closure equations of a kinematic loop can be expressed as a system of multiaffine quations. In this paper, this property is leveraged to introduce a branch-and-prune method specially tailored for solving such systems of equations. The new method is objectively simpler (in the sense that it is easier to understand and to implement) than previous approaches relying on general techniques such as interval Newton methods or methods based on Bernstein polynomials or linear relaxations. Moreover, it relies on two basic operations —linear interpolation and projection onto coordinate planes— that can be e¿ciently computed. The generality of the proposed method is evaluated on position analysis problems with 0-, 1-, and 2-dimensional solution sets, including the inverse kinematics of serial robots and the forward kinematics of parallel ones. The results obtained on these problems show that the efficiency of the method compares favorably to state-of-the-art alternatives.
Description
© 2021 Elsevier
CitationShabani, A.; Porta, J.; Thomas, F. A branch-and-prune method to solve closure equations in dual quaternions. "Mechanism and machine theory", 2021, vol. 164, p. 104424:1-104424:18. 
URIhttp://hdl.handle.net/2117/355122
DOI10.1016/j.mechmachtheory.2021.104424
ISSN0094-114X
Publisher versionhttps://www.sciencedirect.com/science/article/abs/pii/S0094114X21001828?via%3Dihub
Collections
  • KRD - Cinemàtica i Disseny de Robots - Articles de revista [25]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
2462-A-branch-a ... ns-in-dual-quaternions.pdf2,132MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina