Show simple item record

dc.contributor.authorSalcedo Bosch, Andreu
dc.contributor.authorRocadenbosch Burillo, Francisco
dc.contributor.authorSospedra Iglesias, Joaquim
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.date.accessioned2021-11-02T09:11:47Z
dc.date.available2021-11-02T09:11:47Z
dc.date.issued2021-10-18
dc.identifier.citationSalcedo, A.; Rocadenbosch, F.; Sospedra, J. A Robust Adaptive Unscented Kalman Filter for floating Doppler Wind-LiDAR motion correction. "Remote sensing", 18 Octubre 2021, vol. 13, núm. 20, article 4167, p. 1-23.
dc.identifier.issn2072-4292
dc.identifier.urihttp://hdl.handle.net/2117/355110
dc.description.abstractThis study presents a new method for correcting the six degrees of freedom motion-induced error in ZephIR 300 floating Doppler Wind-LiDAR-derived data, based on a Robust Adaptive Unscented Kalman Filter. The filter takes advantage of the known floating Doppler Wind-LiDAR (FDWL) dynamics, a velocity–azimuth display algorithm, and a wind model describing the LiDAR-retrieved wind vector without motion influence. The filter estimates the corrected wind vector by adapting itself to different atmospheric and motion scenarios, and by estimating the covariance matrices of related noise processes. The measured turbulence intensity by the FDWL (with and without correction) was compared against a reference fixed LiDAR over a 25-day period at “El Pont del Petroli”, Barcelona. After correction, the apparent motion-induced turbulence was greatly reduced, and the statistical indicators showed overall improvement. Thus, the Mean Difference improved from -1.70% (uncorrected) to 0.36% (corrected), the Root Mean Square Error (RMSE) improved from 2.01% to 0.86%, and coefficient of determination improved from 0.85 to 0.93.
dc.description.sponsorshipThis research is part of the projects PGC2018-094132-B-I00 and MDM-2016-0600 (“Comm- SensLab” Excellence Unit) funded by Ministerio de Ciencia e Investigación (MCIN)/ Agencia Estatal de Investigación (AEI)/ 10.13039/501100011033/ FEDER “Una manera de hacer Europa”. The work of A. Salcedo-Bosch was supported under grant 2020 FISDU 00455 funded by Generalitat de Catalunya—AGAUR. The European Commission collaborated under projects H2020 ACTRIS-IMP (GA-871115) and H2020 ATMO-ACCESS (GA-101008004). The European Institute of Innovation and Technology (EIT), KIC InnoEnergy project NEPTUNE (call FP7) supported the measurement campaigns.
dc.format.extent23 p.
dc.language.isoeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica::Teledetecció
dc.subject.lcshAtmospheric turbulence
dc.subject.lcshEnvironmental monitoring
dc.subject.otherFloating Doppler Wind LiDAR
dc.subject.otherApparent turbulence
dc.subject.otherMotion compensation
dc.subject.otherAdaptive filtering
dc.subject.otherKalman Filter
dc.subject.otherUnscented Kalman Filter
dc.subject.otherSix degrees of freedom
dc.titleA Robust Adaptive Unscented Kalman Filter for floating Doppler Wind-LiDAR motion correction
dc.typeArticle
dc.subject.lemacTurbulència atmosfèrica
dc.subject.lemacSeguiment ambiental
dc.contributor.groupUniversitat Politècnica de Catalunya. RSLAB - Grup de Recerca en Teledetecció
dc.contributor.groupUniversitat Politècnica de Catalunya. LIM/UPC - Laboratori d'Enginyeria Marítima
dc.identifier.doi10.3390/rs13204167
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.mdpi.com/2072-4292/13/20/4167
dc.rights.accessOpen Access
local.identifier.drac32173136
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-094132-B-I00/ES/TELEDETECCION ATMOSFERICA MEDIANTE SENSORES COOPERATIVOS LIDAR, RADAR Y PASIVOS: APLICACIONES SOBRE TIERRA Y MAR PARA LA OBSERVACION ATMOSFERICA Y ENERGIA EOLICA OFF-SHORE/
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/1PE/MDM-2016-0600
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/871115/EU/Aerosol, Clouds and Trace Gases Research Infrastructure Implementation Project/ACTRIS IMP
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/101008004/EU/Solutions for Sustainable Access to Atmospheric Research Facilities/ATMO-ACCESS
local.citation.authorSalcedo, A.; Rocadenbosch, F.; Sospedra, J.
local.citation.publicationNameRemote sensing
local.citation.volume13
local.citation.number20, article 4167
local.citation.startingPage1
local.citation.endingPage23


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 Generic
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution 4.0 Generic