Show simple item record

dc.contributor.authorKarimi, Shadi
dc.contributor.authorMojaddan, Mohammad
dc.contributor.authorMajidi, Sahand
dc.contributor.authorMehrdel, Pouya
dc.contributor.authorFarré Lladós, Josep
dc.contributor.authorCasals Terré, Jasmina
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Mecànica, Fluids i Aeronàutica
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Mecànica
dc.date.accessioned2021-10-15T07:53:52Z
dc.date.available2022-03-08T01:28:53Z
dc.date.issued2021-05
dc.identifier.citationKarimi, S. [et al.]. Numerical and experimental analysis of a high-throughput blood plasma separator for point-of-care applications. "Analytical and bioanalytical chemistry", Maig 2021, vol. 413, núm. 11, p. 2867-2878.
dc.identifier.issn1618-2642
dc.identifier.urihttp://hdl.handle.net/2117/353691
dc.description.abstractBlood plasma separation from undiluted blood is an essential step in many diagnostic procedures. This study focuses on the numerical optimization of the microfluidic blood plasma separator (BPS) and experimental validation of the results to achieve portable blood plasma separation with high purity and reasonable yield. The proposed design has two parts: a microchannel for blood processing and a tank below the aforementioned main channel for plasma collection. The study uses 3D computational fluid dynamic analysis to investigate the optimal ratio of heights between the top microchannel and the tank and their geometry at various flow rates. Thereafter, the results are compared with the experimental findings of the fabricated devices. These results are contrasted with some recent reported works to verify the proposed device’s contribution to the improvement in the quality and quantity of the extracted plasma. The optimized design is capable of achieving a 19% yield with purity of 77.1%, depending on the requirement of the point-of-care (POC) application. These amounts could be tuned, for instance to 100% pure plasma, but the yield would decrease to 9%. In this study, the candidate application is hemostasis; therefore, the BPS is integrated to a biomimetic surface for hemostasis evaluation near the patients.
dc.format.extent12 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Ciències de la salut
dc.subjectÀrees temàtiques de la UPC::Enginyeria mecànica
dc.subject.lcshBlood plasma
dc.titleNumerical and experimental analysis of a high-throughput blood plasma separator for point-of-care applications
dc.typeArticle
dc.subject.lemacPlasma sanguini
dc.contributor.groupUniversitat Politècnica de Catalunya. MICROTECH LAB - Microtechnology for the Industry
dc.identifier.doi10.1007/s00216-021-03190-1
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://link.springer.com/article/10.1007%2Fs00216-021-03190-1
dc.rights.accessOpen Access
local.identifier.drac31922015
dc.description.versionPostprint (author's final draft)
local.citation.authorKarimi, S.; Mojaddan, M.; Majidi, S.; Mehrdel, P.; Farré-Lladós, J.; Casals-Terré, J.
local.citation.publicationNameAnalytical and bioanalytical chemistry
local.citation.volume413
local.citation.number11
local.citation.startingPage2867
local.citation.endingPage2878


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain