Metric dimension of maximal outerplanar graphs
Cita com:
hdl:2117/353582
Document typeArticle
Defense date2021-02-02
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
In this paper, we study the metric dimension problem in maximal outerplanar graphs. Concretely, if ß(G) denotes the metric dimension of a maximal outerplanar graph G of order n, we prove that 2=ß(G)=¿2n5¿ and that the bounds are tight. We also provide linear algorithms to decide whether the metric dimension of G is 2 and to build a resolving set S of size ¿2n5¿ for G. Moreover, we characterize all maximal outerplanar graphs with metric dimension 2.
CitationClaverol, M. [et al.]. Metric dimension of maximal outerplanar graphs. "Bulletin of the Malaysian Mathematical Sciences Society", 2 Febrer 2021, vol. 44, núm. 4, p. 2603-2630.
ISSN0126-6705
Publisher versionhttps://link.springer.com/article/10.1007/s40840-020-01068-6
Files | Description | Size | Format | View |
---|---|---|---|---|
MetricDimMOPs-CGHHMMT-postpint.pdf | 516,8Kb | View/Open |