Show simple item record

dc.contributor.authorGibert Agulló, Oriol
dc.contributor.authorValderrama Angel, César Alberto
dc.contributor.authorMartínez Martínez, María del Rosario
dc.contributor.authorDarbra Roman, Rosa Maria
dc.contributor.authorOliva Moncunill, Josep
dc.contributor.authorMartí Gregorio, Vicenç
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Química
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Minera, Industrial i TIC
dc.identifier.citationGibert, O. [et al.]. Hydroxyapatite coatings on calcite powder for the removal of heavy metals from contaminated water. "Water", 27 Maig 2021, vol. 13, núm. 11, p. 1493:1-1493:18.
dc.description.abstractAn approach for the remediation of heavy metal-contaminated wastewater that is gaining increasing attention is the application of hydroxyapatite (HAP)-based particles. HAP is conventionally synthesized through wet chemical precipitation of calcium and phosphate ions, although later studies have focused on HAP synthesis from solid calcite contacted with a phosphate solution under ambient conditions. This synthesis route can allow saving soluble Ca-chemicals and, thus, make the process more cost-efficient. The aim of this study was to coat natural calcite powder with a layer of HAP for the removal of Zn and Cu from contaminated water. For this purpose, a HAP layer was synthesized on calcite particles, characterized using several complementary techniques and evaluated for the removal of Zn and Cu from synthetic solutions. Sorption kinetics and equilibrium isotherms, as well as the effect of sonication of the synthesized sample on its sorption performance, were determined. The results showed that calcite particles were efficiently coated with a HAP layer with high capacity in removing Zn and Cu from acidic solutions, with a qmax of 34.97 mg/g for Zn (increased to 37.88 g/mg after sonication of the sample) and 60.24 mg/g for Cu (which hardly varied with sonication). The mechanisms behind the sorption of Zn and Cu onto HAP, inferred from pH changes, the relation between metal uptake and Ca2+ release and XRD analysis, included surface complexation, ion exchange and precipitation of new Zn- and Cu-containing phases
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Enginyeria química
dc.subject.lcshWater -- Pollution
dc.subject.otherCalcium carbonate
dc.subject.otherHeavy metal sorption
dc.subject.otherGroundwater remediation
dc.titleHydroxyapatite coatings on calcite powder for the removal of heavy metals from contaminated water
dc.subject.lemacAigua -- Contaminació
dc.contributor.groupUniversitat Politècnica de Catalunya. R2EM - Resource Recovery and Environmental Management
dc.contributor.groupUniversitat Politècnica de Catalunya. GREMS - Grup de Recerca en Mineria Sostenible
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
local.citation.authorGibert, O.; Valderrama, C.; Martinez, M.; Darbra, R.M.; Oliva, J.; Martí, V.

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain