Mostra el registre d'ítem simple

dc.contributor.authorAbdelgawwad, Ahmed Abdelmonem
dc.contributor.authorCatalà Mallofré, Andreu
dc.contributor.authorPätzold, Matthias
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.date.accessioned2021-10-01T09:13:48Z
dc.date.available2021-10-01T09:13:48Z
dc.date.issued2021-07-28
dc.identifier.citationAbdelgawwad, A.; Catala, A.; Pätzold, M. A trajectory-driven 3D channel model for human activity recognition. "IEEE access", 28 Juliol 2021, vol. 9, p. 103393-103406.
dc.identifier.issn2169-3536
dc.identifier.urihttp://hdl.handle.net/2117/352866
dc.description.abstractThis paper concerns the design, analysis, and simulation of a 3D non-stationary channel model fed with inertial measurement unit (IMU) data. The work in this paper provides a framework for simulating the micro-Doppler signatures of indoor channels for human activity recognition by using radiofrequency-based sensing technologies. The major human body segments, such as wrists, ankles, torso, and head, are modelled as a cluster of moving point scatterers. We provide expressions for the time variant (TV) speed and TV angles of motion based on 3D trajectories of the moving person. Moreover, we present mathematical expressions for the TV Doppler shifts and TV path gains associated with each moving point scatterer. Furthermore, a model of the non-stationary time variant channel transfer function (TV-CTF) is provided, which takes into account the effects caused by a moving person as well as fixed objects, such as furniture, walls, and ceiling. The micro-Doppler signatures of the moving person is extracted from the TV-CTF by employing the concept of the spectrogram, whose expression is also provided in closed form. Our model is confirmed by channel state information (CSI) measurements taken during walking, falling, and sitting activities. The proposed channel model is fed with IMU data that has been collected. We evaluate the micro-Doppler signature of the model and CSI measurements. The results show a good agreement between the spectrograms and the TV mean Doppler shifts of our IMU-driven channel model and the measured CSI. The proposed model enables a paradigm shift from traditional experimental-based approaches to future simulation-based approaches for the design of human activity recognition systems.
dc.description.sponsorshipThis work was supported in part by the WiCare Project under Grant 261895/F20, and in part by the Research Council of Norway (RCN).
dc.format.extent14 p.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.rightsAttribution 4.0 International
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Processament del senyal::Reconeixement de formes
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial
dc.subject.lcshHuman activity recognition
dc.subject.lcshHuman-centered computing
dc.subject.otherHuman activity recognition
dc.subject.otherNon-stationary fading channels
dc.subject.otherChannel state information
dc.subject.otherChannel transfer function
dc.subject.otherSpectrogram
dc.subject.otherTime-variant Doppler power characteristics
dc.subject.otherMicro-Doppler signature
dc.subject.otherChannel measurements
dc.subject.otherInertial measurement units
dc.subject.otherInternet of Things
dc.subject.otherWireless sensing
dc.titleA trajectory-driven 3D channel model for human activity recognition
dc.typeArticle
dc.subject.lemacReconeixement de formes (Informàtica)
dc.subject.lemacComputació centrada en humans
dc.subject.lemacDoppler, Efecte
dc.identifier.doi10.1109/ACCESS.2021.3098951
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/9492038
dc.rights.accessOpen Access
local.identifier.drac32062036
dc.description.versionPostprint (published version)
local.citation.authorAbdelgawwad, A.; Catala, A.; Pätzold, M.
local.citation.publicationNameIEEE access
local.citation.volume9
local.citation.startingPage103393
local.citation.endingPage103406


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple