Atomically dispersed Fe in a C2N based catalyst as a sulfur host for efficient lithium–sulfur batteries
View/Open
Cita com:
hdl:2117/352752
Document typeArticle
Defense date2021-02-04
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Lithium–sulfur batteries (LSBs) are considered to be one of the most promising next generation energy storage systems due to their high energy density and low material cost. However, there are still some challenges for the commercialization of LSBs, such as the sluggish redox reaction kinetics and the shuttle effect of lithium polysulfides (LiPS). Here a 2D layered organic material, C2N, loaded with atomically dispersed iron as an effective sulfur host in LSBs is reported. X-ray absorption fine spectroscopy and density functional theory calculations prove the structure of the atomically dispersed Fe/C2N catalyst. As a result, Fe/C2N-based cathodes demonstrate significantly improved rate performance and long-term cycling stability. Fe/C2N-based cathodes display initial capacities up to 1540 mAh g-1 at 0.1 C and 678.7 mAh g-1 at 5 C, while retaining 496.5 mAh g-1 after 2600 cycles at 3 C with a decay rate as low as 0.013% per cycle. Even at a high sulfur loading of 3 mg cm-2, they deliver remarkable specific capacity retention of 587 mAh g-1 after 500 cycles at 1 C. This work provides a rational structural design strategy for the development of high-performance cathodes based on atomically dispersed catalysts for LSBs.
CitationLiang, Z. [et al.]. Atomically dispersed Fe in a C2N based catalyst as a sulfur host for efficient lithium–sulfur batteries. "Advanced Energy Materials", 4 Febrer 2021, vol. 11, núm. 5, p. 2003507:1-2003507:11.
ISSN1614-6840
Publisher versionhttps://onlinelibrary.wiley.com/doi/10.1002/aenm.202003507