dc.contributor.author | Tost Abadías, Ana |
dc.contributor.author | Migliorelli Falcone, Carolina Mercedes |
dc.contributor.author | Bachiller Matarranz, Alejandro |
dc.contributor.author | Medina Rivera, Inés |
dc.contributor.author | Romero Lafuente, Sergio |
dc.contributor.author | García Cazorla, Àngels |
dc.contributor.author | Mañanas Villanueva, Miguel Ángel |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Enginyeria Biomèdica |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial |
dc.date.accessioned | 2021-09-22T08:46:39Z |
dc.date.available | 2021-09-22T08:46:39Z |
dc.date.issued | 2021-08-11 |
dc.identifier.citation | Tost, A. [et al.]. Choosing strategies to deal with artifactual eeg data in children with cognitive impairment. "Entropy", 11 Agost 2021, vol. 23, núm. 8, p. 1030:1-1030:18. |
dc.identifier.issn | 10994300 |
dc.identifier.uri | http://hdl.handle.net/2117/351949 |
dc.description.abstract | Rett syndrome is a disease that involves acute cognitive impairment and, consequently, a complex and varied symptomatology. This study evaluates the EEG signals of twenty-nine patients and classify them according to the level of movement artifact. The main goal is to achieve an artifact rejection strategy that performs well in all signals, regardless of the artifact level. Two different methods have been studied: one based on the data distribution and the other based on the energy function, with entropy as its main component. The method based on the data distribution shows poor performance with signals containing high amplitude outliers. On the contrary, the method based on the energy function is more robust to outliers. As it does not depend on the data distribution, it is not affected by artifactual events. A double rejection strategy has been chosen, first on a motion signal (accelerometer or EEG low-pass filtered between 1 and 10 Hz) and then on the EEG signal. The results showed a higher performance when working combining both artifact rejection methods. The energy-based method, to isolate motion artifacts, and the data-distribution-based method, to eliminate the remaining lower amplitude artifacts were used. In conclusion, a new method that proves to be robust for all types of signals is designed. |
dc.description.sponsorship | We would like to acknowledge specific funding support from the Spanish Patient Associations Mi Princesa Rett and Rettando al Síndrome de Rett. This project has also received funding from Torrons Vicens and the Ministry of Economy and Competitiveness (MINECO), Spain, under contract DPI2017-83989-R. CIBER-BBN is an initiative of the Instituto de Salud Carlos III, Spain. Alejandro Bachiller is a Serra Húnter Fellow. A.G.C. is supported by FIS P118/00111 “Instituto de Salud Carlos III (ISCIII)” and “Fondo Europeo de desarrollo regional (FEDER)”. Ana Tost has received the predoctoral scholarship FI-AGAUR from the Generalitat de Catalunya. |
dc.language.iso | eng |
dc.rights | Attribution 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica::Bioinformàtica |
dc.subject | Àrees temàtiques de la UPC::Enginyeria biomèdica::Electrònica biomèdica |
dc.subject.lcsh | Brain stimulation |
dc.subject.lcsh | Accelerometers |
dc.subject.lcsh | Electroencephalography |
dc.subject.other | Rett Syndrome (RTT) |
dc.subject.other | Electroencephalography (EEG) |
dc.subject.other | Artifact detection |
dc.subject.other | Data distribution |
dc.subject.other | Energy function |
dc.subject.other | Accelerometer |
dc.title | Choosing strategies to deal with artifactual eeg data in children with cognitive impairment |
dc.type | Article |
dc.subject.lemac | Electroencefalografia |
dc.subject.lemac | Cervell -- Estimulació |
dc.subject.lemac | Acceleròmetres |
dc.contributor.group | Universitat Politècnica de Catalunya. BIOART - BIOsignal Analysis for Rehabilitation and Therapy |
dc.identifier.doi | 10.3390/e23081030 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://www.mdpi.com/1099-4300/23/8/1030 |
dc.rights.access | Open Access |
local.identifier.drac | 32046263 |
dc.description.version | Postprint (published version) |
dc.relation.projectid | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83989-R/ES/ANALISIS MULTIMODAL PARA LA EVALUACION Y REHABILITACION DE TRASTORNOS NEUROLOGICOS DISCAPACITANTES/ |
local.citation.author | Tost, A.; Migliorelli, C.; Bachiller, A.; Medina, I.; Romero, S.; García-Cazorla, À.; Mañanas, M.A. |
local.citation.publicationName | Entropy |
local.citation.volume | 23 |
local.citation.number | 8 |
local.citation.startingPage | 1030:1 |
local.citation.endingPage | 1030:18 |