Show simple item record

dc.contributor.authorTost Abadías, Ana
dc.contributor.authorMigliorelli Falcone, Carolina Mercedes
dc.contributor.authorBachiller Matarranz, Alejandro
dc.contributor.authorMedina Rivera, Inés
dc.contributor.authorRomero Lafuente, Sergio
dc.contributor.authorGarcía Cazorla, Àngels
dc.contributor.authorMañanas Villanueva, Miguel Ángel
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Enginyeria Biomèdica
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.date.accessioned2021-09-22T08:46:39Z
dc.date.available2021-09-22T08:46:39Z
dc.date.issued2021-08-11
dc.identifier.citationTost, A. [et al.]. Choosing strategies to deal with artifactual eeg data in children with cognitive impairment. "Entropy", 11 Agost 2021, vol. 23, núm. 8, p. 1030:1-1030:18.
dc.identifier.issn10994300
dc.identifier.urihttp://hdl.handle.net/2117/351949
dc.description.abstractRett syndrome is a disease that involves acute cognitive impairment and, consequently, a complex and varied symptomatology. This study evaluates the EEG signals of twenty-nine patients and classify them according to the level of movement artifact. The main goal is to achieve an artifact rejection strategy that performs well in all signals, regardless of the artifact level. Two different methods have been studied: one based on the data distribution and the other based on the energy function, with entropy as its main component. The method based on the data distribution shows poor performance with signals containing high amplitude outliers. On the contrary, the method based on the energy function is more robust to outliers. As it does not depend on the data distribution, it is not affected by artifactual events. A double rejection strategy has been chosen, first on a motion signal (accelerometer or EEG low-pass filtered between 1 and 10 Hz) and then on the EEG signal. The results showed a higher performance when working combining both artifact rejection methods. The energy-based method, to isolate motion artifacts, and the data-distribution-based method, to eliminate the remaining lower amplitude artifacts were used. In conclusion, a new method that proves to be robust for all types of signals is designed.
dc.description.sponsorshipWe would like to acknowledge specific funding support from the Spanish Patient Associations Mi Princesa Rett and Rettando al Síndrome de Rett. This project has also received funding from Torrons Vicens and the Ministry of Economy and Competitiveness (MINECO), Spain, under contract DPI2017-83989-R. CIBER-BBN is an initiative of the Instituto de Salud Carlos III, Spain. Alejandro Bachiller is a Serra Húnter Fellow. A.G.C. is supported by FIS P118/00111 “Instituto de Salud Carlos III (ISCIII)” and “Fondo Europeo de desarrollo regional (FEDER)”. Ana Tost has received the predoctoral scholarship FI-AGAUR from the Generalitat de Catalunya.
dc.language.isoeng
dc.rightsAttribution 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica::Bioinformàtica
dc.subjectÀrees temàtiques de la UPC::Enginyeria biomèdica::Electrònica biomèdica
dc.subject.lcshBrain stimulation
dc.subject.lcshAccelerometers
dc.subject.lcshElectroencephalography
dc.subject.otherRett Syndrome (RTT)
dc.subject.otherElectroencephalography (EEG)
dc.subject.otherArtifact detection
dc.subject.otherData distribution
dc.subject.otherEnergy function
dc.subject.otherAccelerometer
dc.titleChoosing strategies to deal with artifactual eeg data in children with cognitive impairment
dc.typeArticle
dc.subject.lemacElectroencefalografia
dc.subject.lemacCervell -- Estimulació
dc.subject.lemacAcceleròmetres
dc.contributor.groupUniversitat Politècnica de Catalunya. BIOART - BIOsignal Analysis for Rehabilitation and Therapy
dc.identifier.doi10.3390/e23081030
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.mdpi.com/1099-4300/23/8/1030
dc.rights.accessOpen Access
local.identifier.drac32046263
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-83989-R/ES/ANALISIS MULTIMODAL PARA LA EVALUACION Y REHABILITACION DE TRASTORNOS NEUROLOGICOS DISCAPACITANTES/
local.citation.authorTost, A.; Migliorelli, C.; Bachiller, A.; Medina, I.; Romero, S.; García-Cazorla, À.; Mañanas, M.A.
local.citation.publicationNameEntropy
local.citation.volume23
local.citation.number8
local.citation.startingPage1030:1
local.citation.endingPage1030:18


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record