Show simple item record

dc.contributor.authorCastro Cros, Martí de
dc.contributor.authorRosso, Stefano
dc.contributor.authorBahilo, Edgar
dc.contributor.authorVelasco García, Manel
dc.contributor.authorAngulo Bahón, Cecilio
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Intel·ligència Artificial
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.date.accessioned2021-09-03T09:37:19Z
dc.date.available2021-09-03T09:37:19Z
dc.date.issued2021-04-12
dc.identifier.citationDe Castro, M. [et al.]. Condition assessment of industrial gas turbine compressor using a drift soft sensor based in autoencoder. "Sensors", 12 Abril 2021, vol. 21, núm. 8, p. 1-14.
dc.identifier.issn1424-8220
dc.identifier.urihttp://hdl.handle.net/2117/350686
dc.description.abstractMaintenance is the process of preserving the good condition of a system to ensure its reliability and availability to perform specific operations. The way maintenance is nowadays performed in industry is changing thanks to the increasing availability of data and condition assessment methods. Soft sensors have been widely used over last years to monitor industrial processes and to predict process variables that are difficult to measured. The main objective of this study is to monitor and evaluate the condition of the compressor in a particular industrial gas turbine by developing a soft sensor following an autoencoder architecture. The data used to monitor and analyze its condition were captured by several sensors located along the compressor for around five years. The condition assessment of an industrial gas turbine compressor reveals significant changes over time, as well as a drift in its performance. These results lead to a qualitative indicator of the compressor behavior in long-term performance.
dc.format.extent14 p.
dc.language.isoeng
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial
dc.subjectÀrees temàtiques de la UPC::Informàtica::Automàtica i control
dc.subject.lcshGas-turbines
dc.subject.lcshArtificial intelligence
dc.subject.otherArtificial intelligence
dc.subject.otherAutoencoder
dc.subject.otherSoft sensor
dc.subject.otherCondition assessment
dc.subject.otherGas turbine
dc.titleCondition assessment of industrial gas turbine compressor using a drift soft sensor based in autoencoder
dc.typeArticle
dc.subject.lemacTurbines de gas
dc.subject.lemacIntel·ligència artificial
dc.subject.lemacSistemes experts (Informàtica)
dc.contributor.groupUniversitat Politècnica de Catalunya. GREC - Grup de Recerca en Enginyeria del Coneixement
dc.identifier.doi10.3390/s21082708
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/21/8/2708/pdf
dc.rights.accessOpen Access
local.identifier.drac31920184
dc.description.versionPostprint (published version)
local.citation.authorDe Castro, M.; Rosso, S.; Bahilo, E.; Velasco, M.; Angulo, C.
local.citation.publicationNameSensors
local.citation.volume21
local.citation.number8
local.citation.startingPage1
local.citation.endingPage14


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record