Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.660 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Intel·ligència Artificial
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Programes de doctorat
  • Doctorat en Intel·ligència Artificial
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Condition assessment of industrial gas turbine compressor using a drift soft sensor based in autoencoder

Thumbnail
View/Open
sensors-21-02708-v2.pdf (995,2Kb)
Share:
 
 
10.3390/s21082708
 
  View Usage Statistics
Cita com:
hdl:2117/350686

Show full item record
Castro Cros, Martí deMés informació
Rosso, Stefano
Bahilo, Edgar
Velasco García, ManelMés informacióMés informacióMés informació
Angulo Bahón, CecilioMés informacióMés informacióMés informació
Document typeArticle
Defense date2021-04-12
PublisherMultidisciplinary Digital Publishing Institute (MDPI)
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Maintenance is the process of preserving the good condition of a system to ensure its reliability and availability to perform specific operations. The way maintenance is nowadays performed in industry is changing thanks to the increasing availability of data and condition assessment methods. Soft sensors have been widely used over last years to monitor industrial processes and to predict process variables that are difficult to measured. The main objective of this study is to monitor and evaluate the condition of the compressor in a particular industrial gas turbine by developing a soft sensor following an autoencoder architecture. The data used to monitor and analyze its condition were captured by several sensors located along the compressor for around five years. The condition assessment of an industrial gas turbine compressor reveals significant changes over time, as well as a drift in its performance. These results lead to a qualitative indicator of the compressor behavior in long-term performance.
CitationDe Castro, M. [et al.]. Condition assessment of industrial gas turbine compressor using a drift soft sensor based in autoencoder. "Sensors", 12 Abril 2021, vol. 21, núm. 8, p. 1-14. 
URIhttp://hdl.handle.net/2117/350686
DOI10.3390/s21082708
ISSN1424-8220
Publisher versionhttps://www.mdpi.com/1424-8220/21/8/2708/pdf
Collections
  • Doctorat en Intel·ligència Artificial - Articles de revista [26]
  • Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Articles de revista [1.276]
  • GREC - Grup de Recerca en Enginyeria del Coneixement - Articles de revista [94]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
sensors-21-02708-v2.pdf995,2KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina