Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
64.015 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Dobles Màsters oficials
  • Doble Màster universitari en Enginyeria Industrial i Automàtica i Robòtica (ETSEIB)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Màsters oficials
  • Dobles Màsters oficials
  • Doble Màster universitari en Enginyeria Industrial i Automàtica i Robòtica (ETSEIB)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robot Learning from Demonstration with Gaussian Processes

Thumbnail
View/Open
arduengo-tfm.pdf (68,53Mb)
Share:
 
  View Usage Statistics
Cita com:
hdl:2117/350410

Show full item record
Arduengo García, Miguel
Tutor / directorOcampo-Martínez, CarlosMés informacióMés informacióMés informació
Document typeMaster thesis
Date2021-06-21
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Autonomous systems are no longer confined to factories, but they are progressively spreading to urban, social, and assistive domains. However, in order to become handy co-workers and helpful assistants, robots must be endowed with quite different abilities than their industrial ancestors, and a lot of additional research is still required. A key challenge in intelligent robotics is creating autonomous agents that are capable of directly interacting with the world around them to achieve their goals. Learning plays a central role in intelligent autonomous systems, as the real world contains too much uncertainty and a robot must be capable of dealing with environments that neither it nor its designers have foreseen. Learning from demonstration is a promising paradigm that allows robots to learn complex tasks that cannot be easily scripted, but can be demonstrated by a human teacher. In this thesis, we develop complete learning from demonstration framework. We first present a whole-body teleoperation approach for human motion transfer, which allows a teacher equipped with a motion capture system to intuitively provide demonstrations to a robot. Then, to learn a generalized rep- resentation of the task which can be adapted to unforeseen scenarios, we unify in a single, entirely Gaussian-Process-based formulation, the main components of a state-of-the-art method. We evaluate our approach through a series of real-world experiments with the manipulator robot TIAGo, achieving satisfactory results. Finally, we must be aware that we are in a technological inflection point in which robots are developing the capacity to greatly increase their cognitive and physical capabilities. This will raise complex issues regarding the economy, ethics, law, and the environment, which we provide an overview of in this thesis. Intelligent robotics offer an unimaginable spectrum of possibilities, with the appropriate attention and the right policies they open the doors to new sources of value and growth. However, it is in the hands of scientists and engineers to not look away and anticipate the potential impacts in order to turn robots into the motor of global prosperity
SubjectsSupervised learning (Machine learning), Robots autònoms -- Disseny i construcció, Aprenentatge automàtic -- Avaluació -- Models matemàtics, Aprenentatge supervisat (Aprenentatge automàtic)
URIhttp://hdl.handle.net/2117/350410
Collections
  • Dobles Màsters oficials - Doble Màster universitari en Enginyeria Industrial i Automàtica i Robòtica (ETSEIB) [50]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
arduengo-tfm.pdf68,53MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina