dc.contributor.author | Moriña, David |
dc.contributor.author | Fernandez Fontelo, Amanda |
dc.contributor.author | Cabaña Nigro, Ana Alejandra |
dc.contributor.author | Arratia Quesada, Argimiro Alejandro |
dc.contributor.author | Ávalos Villaseñor, Gustavo Eduardo |
dc.contributor.author | Puig, Pedro |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament de Ciències de la Computació |
dc.contributor.other | Universitat Politècnica de Catalunya. Doctorat en Computació |
dc.date.accessioned | 2021-07-15T10:39:54Z |
dc.date.available | 2021-12-28T01:27:16Z |
dc.date.issued | 2021-12 |
dc.identifier.citation | Moriña, D. [et al.]. Cumulated burden of Covid-19 in Spain from a Bayesian perspective. "European journal of public health", Desembre 2021, Vol. 31, núm. 4, p. 917-920. |
dc.identifier.issn | 1101-1262 |
dc.identifier.uri | http://hdl.handle.net/2117/349412 |
dc.description.abstract | Background
The main goal of this work is to estimate the actual number of cases of Covid-19 in Spain in the period 01-31-2020/06-01-2020 by Autonomous Communities. Based on these estimates, this work allows us to accurately re-estimate the lethality of the disease in Spain, taking into account unreported cases.
Methods
A hierarchical Bayesian model recently proposed in the literature has been adapted to model the actual number of Covid-19 cases in Spain.
Results
The results of this work show that the real load of Covid-19 in Spain in the period considered is well above the data registered by the public health system. Specifically, the model estimates show that, cumulatively until June 1st, 2020, there were 2 425 930 cases of Covid-19 in Spain with characteristics similar to those reported (95% credibility interval: 2 148 261 2 813 864), from which were actually registered only 518 664.
Conclusions
Considering the results obtained from the second wave of the Spanish seroprevalence study, which estimates 2 350 324 cases of Covid-19 produced in Spain, in the period of time considered, it can be seen that the estimates provided by the model are quite good. This work clearly shows the key importance of having good quality data to optimize decision-making in the critical context of dealing with a pandemic. |
dc.format.extent | 4 p. |
dc.language.iso | eng |
dc.subject | Àrees temàtiques de la UPC::Ciències de la salut::Medicina::Medicina comunitària i salut pública |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Estadística aplicada::Estadística biosanitària |
dc.subject.lcsh | COVID-19 (Disease) |
dc.subject.lcsh | Public health |
dc.subject.lcsh | Bayesian statistical decision theory |
dc.subject.other | Covid-19 |
dc.subject.other | Bayesian methods |
dc.subject.other | Public health |
dc.subject.other | Infections |
dc.subject.other | Underreporting |
dc.title | Cumulated burden of Covid-19 in Spain from a Bayesian perspective |
dc.type | Article |
dc.subject.lemac | COVID-19 (Malaltia) |
dc.subject.lemac | Salut pública |
dc.subject.lemac | Estadística bayesiana |
dc.contributor.group | Universitat Politècnica de Catalunya. SOCO - Soft Computing |
dc.identifier.doi | 10.1093/eurpub/ckab118 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | https://academic.oup.com/eurpub/advance-article/doi/10.1093/eurpub/ckab118/6310740 |
dc.rights.access | Open Access |
local.identifier.drac | 31871721 |
dc.description.version | Postprint (author's final draft) |
dc.relation.projectid | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-89244-R/ES/GESTION Y ANALISIS DE DATOS COMPLEJOS/ |
local.citation.author | Moriña, D.; Fernandez, A.; Cabaña, A.; Arratia, A.; Avalos, G.; Puig, P. |
local.citation.publicationName | European journal of public health |
local.citation.volume | 31 |
local.citation.number | 4 |
local.citation.startingPage | 917 |
local.citation.endingPage | 920 |