Computational modeling of adsorption packed bed reactors and solar-driven adsorption cooling systems
View/Open
Cita com:
hdl:2117/348907
Chair / Department / Institute
Universitat Politècnica de Catalunya. Departament de Màquines i Motors Tèrmics
Document typeDoctoral thesis
Data de defensa2021-05-03
PublisherUniversitat Politècnica de Catalunya
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 International
Abstract
Environmental concerns regarding climate change and ozone depletion urge for a paradigm shift in the cooling production. The cooling demand exhibits an alarmingly increasing trend, thus its satisfaction in a sustainable manner is imperative. Adsorption cooling systems (ACSs) are a potential candidate for a sustainable future of cooling production, since they can utilize solar energy or waste heat, as well as they can employ substances with zero ozone depletion and global warming potential. The objective of this thesis is to contribute to the investigation and improvement of ACSs, through the development of two computational models - which approach ACSs from different perspectives - and their respective utilization for the conduction of related numerical studies.
The first research direction focuses on the design of the adsorption reactor, the most vital component of ACSs. Its geometrical configuration is determinant for the system performance. The reactor design is a crucial task since it creates a dichotomy between the two performance indicators - the Specific Cooling Power (SCP) and the Coefficient of Performance (COP). Individual optimizations based on the SCP and the COP would result in completely opposite geometrical configurations. A computational model for the simulation of adsorption packed bed reactors was developed, capable of simulating any potential reactor geometry. A multi-timestep approach is adopted, resulting in a drastic reduction of the computational cost of the simulations. Verification and validation assessments were performed in order to evaluate the reliability of the model. Two major studies were conducted within this research direction. The first aspires to provide a comparison between five reactor geometries, motivated by the lack of comparability across different studies in the literature. Thirteen cases of each geometry are simulated, by varying the fin thickness, fin length and solid volume fraction. The second study pertains to a thorough investigation of a geometry that remained underexplored hitherto - the hexagonal honeycomb adsorption reactor. A parametric study is conducted with respect to the three dimensions that define the geometry, as well as for various operating conditions.
The second research direction is dedicated to the investigation of adsorption cooling systems, and in particular, to their integration within a wider thermal system, a solar-cooled building. Such integration is not straight-forward due to thermal inertia effects and the inherent cyclic operation of ACSs, as well as due to the dependence on an intermittent source and an auxiliary unit, with a clear objective to prioritize solar energy. A numerical model was developed using 1-d models for the adsorption reactors and 0-d models for the evaporator and condenser. The model is validated against experimental results found in the literature. The model is coupled to the generic optimization tool GenOpt, thus allowing the conduction of optimization studies. The ACS model is then coupled to solar collectors and thermal storage models, as well as to a building model. The latter was previously developed in the CTTC laboratory. This coupling results in a comprehensive simulation tool for adsorption-based solar-cooled buildings. A case study for a solar-cooled office is considered, with the objective to investigate the potential of satisfying its cooling demand using solar energy. A control strategy is proposed based on variable cycle duration, using optimized values for the instantaneous operating conditions. The variable cycle duration approach allows to satisfy the cooling demand using significantly less solar collectors or less auxiliary energy input. The potential carbon dioxide emissions avoidance is calculated between 28.1-90.7% with respect to four scenarios of electricity-driven systems of different performance and carbon emission intensity. La preocupació mediambiental sobre el canvi climàtic i l'esgotament d'ozó exigeix un canvi de paradigma en la producció de fred. La demanda de refredament mostra una tendència alarmant creixent, així és imperatiu satisfer-la de forma sostenible. Els sistemes de refredament per adsorció (ACS) són un candidat per a un futur sostenible de la producció de fred, ja que poden utilitzar energia solar o calor residual, emprant substàncies amb zero potencial d'esgotament d'ozó i d'escalfament global. L'objectiu d'aquesta tesi és contribuir a la investigació i millora dels ACS, mitjançant el desenvolupament de dos models computacionals - que aborden els ACS des de diferents perspectives - i la seva utilització per a la realització d'estudis numèrics. La primera línia d'investigació se centra en el disseny del reactor d'adsorció, el component més important dels ACS. La seva configuració geomètrica és determinant pel rendiment de sistema. El seu disseny és una tasca crucial, ja que crea una dicotomia entre la potència específica de refrigeració (SCP) i el coeficient de rendiment (COP). Les optimitzacions individuals basades en el SCP i el COP resultarien a configuracions geomètriques completament oposades. S'ha desenvolupat un model computacional per a la simulació de reactors d'adsorció tipus "packed bed", capaç de simular reactors de qualsevol geometria. S'adopta una estratègia multi-timestep, que permet una dràstica reducció del cost computacional de les simulacions. La fiabilitat del model es va avaluar a través de processos de verificació i validació. Dins d'aquesta línia de recerca es van realitzar dos estudis principals. El primer aspira a proporcionar una comparació entre cinc geometries de reactors, motivat per la falta de comparabilitat entre diferents estudis en la literatura. Es simulen tretze casos de cada geometria, variant el gruix de les aletes, la seva longitud i la fracció de volum de sòlid. El segon estudi presenta la investigació d'una geometria sub-explorada previament, el reactor d'adsorció de honeycomb hexagonal. Es realitza un estudi paramètric pel que fa a les tres dimensions que defineixen la geometria, així com per a diverses condicions de funcionament. La segona línia de recerca es dedica a la investigació dels ACS. i en particular, a la seva integració dins d'un sistema tèrmic més ampli, un edifici refredat per energia solar. Aquesta integració no és senzilla a causa de la inèrcia tèrmica i a el funcionament cíclic inherent dels ACS, així com a la dependència d'una font intermitent i d'un sistema auxiliar, amb l'objectiu de prioritzar l'energia solar. S'ha desenvolupat un model numèric utilitzant models 1-d pels reactors i models 0-d per l'evaporador i el condensador. El model es va validar amb resultats experimentals trobats en la literatura. El model es va acoblar amb l'eina d'optimització genèrica GenOpt, permetent així estudis d'optimització. El model ACS es va acoblar amb models de col·lectors solars, emmagatzematge tèrmic i amb un model d'edifici. Aquest últim va ser desenvolupat prèviament al CTTC. Aquest acoblament resulta a una eina de simulació integral per a edificis refredats per energia solar utilitzant adsorció. Es considera un cas d'estudi per a una oficina refredada per energia solar, amb l'objectiu d'investigar el potencial de satisfer la seva demanda de fred utilitzant energia solar. Es proposa una estratègia de control basada en la duració variable del cicle, utilitzant valors optimitzats per a les condicions instantànies. La durada variable d'el cicle permet satisfer la demanda utilitzant una quantitat significativament menor de col·lectors solars o un menor aportació d'energia auxiliar. Les emissions de CO2 evitades es calculen entre 28.1-90.7% respecte a quatre escenaris de sistemes elèctrics de diferent rendiment i intensitat d'emissions de carboni.
CitationPapakokkinos, G. Computational modeling of adsorption packed bed reactors and solar-driven adsorption cooling systems. Tesi doctoral, UPC, Departament de Màquines i Motors Tèrmics, 2021. DOI 10.5821/dissertation-2117-348907 . Available at: <http://hdl.handle.net/2117/348907>
Collections
Files | Description | Size | Format | View |
---|---|---|---|---|
TGP1de1.pdf | 6,817Mb | View/Open |