Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.775 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GEOMVAP - Geometria de Varietats i Aplicacions
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GEOMVAP - Geometria de Varietats i Aplicacions
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geometric quantization via cotangent models

Thumbnail
View/Open
Article publicat en revista (798,0Kb)
Geometric_quantization_via_cotangent_liftsFINAL.pdf (795,5Kb)
Share:
 
 
10.1007/s13324-021-00559-4
 
  View Usage Statistics
Cita com:
hdl:2117/348245

Show full item record
Mir Garcia, PauMés informacióMés informació
Miranda Galcerán, EvaMés informacióMés informacióMés informació
Document typeArticle
Defense date2021-09
Rights accessOpen Access
Attribution 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution 3.0 Spain
Abstract
In this article we give a universal model for geometric quantization associated to a real polarization given by an integrable system with non-degenerate singularities. This universal model goes one step further than the cotangent models in [13] by both considering singular orbits and adding to the cotangent models a model for the prequantum line bundle. These singularities are generic in the sense that are given by Morse-type functions and include elliptic, hyperbolic and focus-focus singularities. Examples of systems admitting such singularities are toric, semitoric and almost toric manifolds, as well as physical systems such as the coupling of harmonic oscillators, the spherical pendulum or the reduction of the Euler’s equations of the rigid body on T *(SO(3)) to a sphere. Our geometric quantization formulation coincides with the models given in [11] and [21] away from the singularities and corrects former models for hyperbolic and focus-focus singularities cancelling out the infinite dimensional contributions obtained by former approaches. The geometric quantization models provided here match the classical physical methods for mechanical systems such as the spherical pendulum as presented in [4]. Our cotangent models obey a local-to-global principle and can be glued to determine the geometric quantization of the global systems even if the global symplectic classification of the systems is not known in general.
CitationMir, P.; Miranda, E. Geometric quantization via cotangent models. "Analysis and Mathematical Physics", Setembre 2021, vol. 11, núm. 3, p. art-118. 
URIhttp://hdl.handle.net/2117/348245
DOI10.1007/s13324-021-00559-4
ISSN1664-2368
Publisher versionhttps://www.springer.com/journal/13324
Collections
  • GEOMVAP - Geometria de Varietats i Aplicacions - Articles de revista [163]
  • Doctorat en Matemàtica Aplicada - Articles de revista [74]
  • Departament de Matemàtiques - Articles de revista [3.007]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Mir-Miranda2021 ... cQuantizationViaCotang.pdfArticle publicat en revista798,0KbPDFView/Open
Geometric_quant ... a_cotangent_liftsFINAL.pdf795,5KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina