On the enumeration of bipartite simple games
View/Open
Article (299,6Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/346977
Document typeArticle
Defense date2021-07-15
Rights accessRestricted access - publisher's policy
(embargoed until 2023-08-01)
Abstract
This paper provides a classification of all monotonic bipartite simple games. The problem we deal with is very versatile since simple games are inequivalent monotonic Boolean functions, functions that are used in many fields such as game theory, neural networks, artificial intelligence, reliability or multiple-criteria decision-making. The obtained classification can be implemented in an algorithm able to enumerate bipartite simple games. These numbers provide some light on enumerations of several subclasses of bipartite simple games, for which we find formulas.
Complete simple games, a subclass of all simple games for which the desirability relation is a complete preordering, were already classified by means of two parameters: a vector and a matrix fulfilling some conditions. Complete simple games are inequivalent monotonic regular Boolean functions. In this paper, we deduce a procedure for bipartite non-complete games, which allows enumerating the number of bipartite simple games. Several formulas are obtained, in particular polynomial expressions for the number of bicameral meet games and the number of bicameral join games, two types of voting systems widely used in practice.
Description
© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
CitationFreixas, J.; Samaniego, D. On the enumeration of bipartite simple games. "Discrete applied mathematics", 15 Juliol 2021, vol. 297, p. 129-141.
ISSN0166-218X
Files | Description | Size | Format | View |
---|---|---|---|---|
Freixas-Samaniego-21.pdf![]() | Article | 299,6Kb | Restricted access |
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 4.0 Generic