Interaction of a dislocation pileup with {332} tilt grain boundary in bcc metals studied by MD simulations
View/Open
Cita com:
hdl:2117/346611
Document typeArticle
Defense date2021-01
PublisherAmerican Physical Society (APS)
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
ProjectM4F - MULTISCALE MODELLING FOR FUSION AND FISSION MATERIALS (EC-H2020-755039)
PROCESOS NANO-ESTRUCTURALES EN METALES Y ALEACIONES ASOCIADOS A LA DEFORMACION PLASTICA Y%2FO IRRADIACION (MINECO-FIS2015-69017-P)
PROCESOS NANO-ESTRUCTURALES EN METALES Y ALEACIONES ASOCIADOS A LA DEFORMACION PLASTICA Y%2FO IRRADIACION (MINECO-FIS2015-69017-P)
Abstract
The sustainability and capacity of macroscopic deformation by polycrystalline metals and metallic alloys is controlled by the propagation of dislocation-mediated slip through grains. In this paper, the interaction of a pileup of 1/2¿111¿ dislocations with the {332} tilt grain boundary (GB) is studied as a function of temperature in three bcc metals: iron (Fe), chromium (Cr), and tungsten (W). The interaction results in the transformation of the crystal dislocation into GB dislocations. The {332} tilt GB absorbs the crystal dislocations of the pileup, neither the transmission nor reflection of dislocations was observed. The reaction product at the GB is determined by the crystallography of the GB and the features of the crystal dislocations involved, specifically, the orientation of the Burgers vector and the glide plane of the dislocation. In general, the decomposition results in the formation of a sessile GB dislocation with a riser that facets the GB and several elementary disconnections that glide away. In some cases, the riser increases its length with the number of dislocations absorbed and a new asymmetrical grain boundary of {112}/{110} type is created. For a given external shear stress, the number of dislocations absorbed depends on the orientation of the Burgers vector, glide plane of the pileup, and material.
CitationKvashin, N. [et al.]. Interaction of a dislocation pileup with {332} tilt grain boundary in bcc metals studied by MD simulations. "Physical review materials", 2021, vol. 5, núm. 1, p. 013605:1-013605:12.
ISSN2475-9953
Files | Description | Size | Format | View |
---|---|---|---|---|
31775094.pdf | 2,467Mb | View/Open |