Mostrar el registro sencillo del ítem

dc.contributor.authorBalbuena Martínez, Maria Camino Teófila
dc.contributor.authorDalfó Simó, Cristina
dc.contributor.authorMartínez Barona, Berenice
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.contributor.otherUniversitat Politècnica de Catalunya. Doctorat en Matemàtica Aplicada
dc.date.accessioned2021-05-14T10:35:34Z
dc.date.issued2020-10-15
dc.identifier.citationBalbuena, C.; Dalfo, C.; Martínez, B. Identifying codes in line digraphs. "Applied mathematics and computation", 15 Octubre 2020, vol. 383, p. 125357:1-125357:10.
dc.identifier.issn0096-3003
dc.identifier.otherhttps://arxiv.org/pdf/1905.05083.pdf
dc.identifier.urihttp://hdl.handle.net/2117/345607
dc.description© 2020 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.description.abstractGiven an integer ` = 1, a (1, = `)-identifying code in a digraph is a dominating subset C of vertices such that all distinct subsets of vertices of cardinality at most ` have distinct closed in-neighbourhood within C. In this paper, we prove that every k-iterated line digraph of minimum in-degree at least 2 and k = 2, or minimum indegree at least 3 and k = 1, admits a (1, = `)-identifying code with ` = 2, and in any case it does not admit a (1, = `)-identifying code for ` = 3. Moreover, we find that the identifying number of a line digraph is lower bounded by the size of the original digraph minus its order. Furthermore, this lower bound is attained for oriented graphs of minimum in-degree at least 2.
dc.description.sponsorshipThis research is supported by MICINN from the Spanish Government under project PGC2018-095471-B-I00 and partially by AGAUR from the Catalan Government under project 2017SGR1087. The research of the second author has also been supported by MICINN from the Spanish Government under project MTM2017-83271-R. B. Martínez-Barona has received funding from the scholarship 254379/438356 from CONACYT from Mexico. The second and third authors have received funding research and innovation programme under the Marie Sklodowska-Curie grant agreement No 734922.
dc.language.isoeng
dc.publisherElsevier
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica discreta::Teoria de grafs
dc.subject.lcshGraph theory
dc.subject.otherLine digraph
dc.subject.otherIdentifying code
dc.subject.otherDominating set
dc.subject.otherSeparating set
dc.titleIdentifying codes in line digraphs
dc.typeArticle
dc.subject.lemacGrafs, Teoria de
dc.contributor.groupUniversitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
dc.identifier.doi10.1016/j.amc.2020.125357
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::05 Combinatorics::05C Graph theory
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0096300320303210?via%3Dihub
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac28485913
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/734922/EU/Combinatorics of Networks and Computation/CONNECT
dc.relation.projectidinfo:eu-repo/grantAgreement/MICINN/2PE/PGC2018-095471-B-I00
dc.date.lift2022-10-15
local.citation.authorBalbuena, C.; Dalfo, C.; Martínez, B.
local.citation.publicationNameApplied mathematics and computation
local.citation.volume383
local.citation.startingPage125357:1
local.citation.endingPage125357:10
local.requestitem.embargattrue


Ficheros en el ítem

Imagen en miniatura

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Todos los derechos reservados.Esta obra está protegida por los derechos de propiedad intelectual e industrial. Sin perjuicio de las exenciones legales existentes, queda prohibida su reproducción, distribución, comunicación pública o transformación sin la autorización del titular de los derechos